Fix number of tuples group-and-sort

This commit is contained in:
Alejandro Gallo 2021-11-17 15:30:19 +01:00
parent 78580c5edb
commit 5aa10f31ad
3 changed files with 131 additions and 95 deletions

View File

@ -1503,6 +1503,7 @@ using PartialTuple = std::array<size_t, 2>;
using ABCTuples = std::vector<ABCTuple>;
constexpr ABCTuple FAKE_TUPLE = {0, 0, 0};
constexpr ABCTuple INVALID_TUPLE = {1, 1, 1};
#+end_src
*** Distributing the tuples
@ -1733,22 +1734,17 @@ namespace group_and_sort {
**** Utils
#+begin_src c++ :tangle (atrip-tuples-h)
// Provides the node on which the slice-element is found
// Right now we distribute the slices in a round robin fashion
// over the different nodes (NOTE: not mpi ranks but nodes)
inline
size_t isOnNode(size_t tuple, size_t nodes) { return tuple % nodes; }
struct Info {
size_t nNodes;
size_t nodeId;
};
size_t isOnNode(size_t tuple, size_t nNodes) { return tuple % nNodes; }
// return the node (or all nodes) where the elements of this
// tuple are located
std::vector<size_t> getTupleNodes(ABCTuple t, size_t nNodes) {
std::vector<size_t> getTupleNodes(ABCTuple const& t, size_t nNodes) {
std::vector<size_t>
nTuple = { isOnNode(t[0], nNodes)
, isOnNode(t[1], nNodes)
@ -1756,6 +1752,12 @@ std::vector<size_t> getTupleNodes(ABCTuple t, size_t nNodes) {
};
return unique(nTuple);
}
struct Info {
size_t nNodes;
size_t nodeId;
};
#+end_src
**** Distribution
@ -1781,27 +1783,33 @@ ABCTuples specialDistribution(Info const& info, ABCTuples const& allTuples) {
if (info.nodeId == 0)
std::cout << "\tGoing through all "
<< allTuples.size()
<< " tuples\n";
<< " tuples in "
<< nNodes
<< " nodes\n";
// build container-n-d's
for (auto const& t: allTuples) {
// one which node(s) are the tuple elements located...
// put them into the right container
auto const _nodes = getTupleNodes(t, nNodes);
switch (_nodes.size()) {
case 1:
container1d[_nodes[0]].push_back(t);
break;
case 2:
container2d[ _nodes[0]
+ _nodes[1] * nNodes
].push_back(t);
break;
case 3:
container3d[ _nodes[0]
+ _nodes[1] * nNodes
+ _nodes[2] * nNodes * nNodes
].push_back(t);
break;
}
}
if (info.nodeId == 0)
@ -1809,9 +1817,9 @@ ABCTuples specialDistribution(Info const& info, ABCTuples const& allTuples) {
// DISTRIBUTE 1-d containers
// every tuple which is only located at one node belongs to this node
{
auto const& _tuplesVec = container1d[info.nodeId];
nodeTuples.resize(_tuplesVec.size());
std::copy(_tuplesVec.begin(), _tuplesVec.end(), nodeTuples.begin());
auto const& _tuples = container1d[info.nodeId];
nodeTuples.resize(_tuples.size(), INVALID_TUPLE);
std::copy(_tuples.begin(), _tuples.end(), nodeTuples.begin());
}
if (info.nodeId == 0)
@ -1820,12 +1828,12 @@ ABCTuples specialDistribution(Info const& info, ABCTuples const& allTuples) {
//the tuples which are located at two nodes are half/half given to these nodes
for (size_t yx = 0; yx < container2d.size(); yx++) {
auto const& _tuplesVec = container2d[yx];
auto const& _tuples = container2d[yx];
const
size_t idx = yx % nNodes
// remeber: yx = idy * nNodes + idx
, idy = yx / nNodes
, n_half = _tuplesVec.size() / 2
, n_half = _tuples.size() / 2
, size = nodeTuples.size()
;
@ -1835,16 +1843,16 @@ ABCTuples specialDistribution(Info const& info, ABCTuples const& allTuples) {
nend = n_half;
} else if (info.nodeId == idy) {
nbeg = 1 * n_half;
nend = _tuplesVec.size();
nend = _tuples.size();
} else {
// either idx or idy is my node
continue;
}
size_t const nextra = nend - nbeg;
nodeTuples.resize(size + nextra);
std::copy(_tuplesVec.begin() + nbeg,
_tuplesVec.begin() + nend,
nodeTuples.resize(size + nextra, INVALID_TUPLE);
std::copy(_tuples.begin() + nbeg,
_tuples.begin() + nend,
nodeTuples.begin() + size);
}
@ -1853,14 +1861,14 @@ ABCTuples specialDistribution(Info const& info, ABCTuples const& allTuples) {
std::cout << "\tBuilding 3-d containers\n";
// DISTRIBUTE 3-d containers
for (size_t zyx = 0; zyx < container3d.size(); zyx++) {
auto const& _tuplesVec = container3d[zyx];
auto const& _tuples = container3d[zyx];
const
size_t idx = zyx % nNodes
, idy = (zyx / nNodes) % nNodes
// remember: zyx = idx + idy * nNodes + idz * nNodes^2
, idz = zyx / nNodes / nNodes
, n_third = _tuplesVec.size() / 3
, n_third = _tuples.size() / 3
, size = nodeTuples.size()
;
@ -1870,19 +1878,19 @@ ABCTuples specialDistribution(Info const& info, ABCTuples const& allTuples) {
nend = 1 * n_third;
} else if (info.nodeId == idy) {
nbeg = 1 * n_third;
nend = 2 * nextra;
nend = 2 * n_third;
} else if (info.nodeId == idz) {
nbeg = 2 * n_third;
nend = _tuplesVec.size();
nend = _tuples.size();
} else {
// either idx or idy or idz is my node
continue;
}
size_t const nextra = nend - nbeg;
nodeTuples.resize(size + nextra);
std::copy(_tuplesVec.begin() + nbeg,
_tuplesVec.begin() + nend,
nodeTuples.resize(size + nextra, INVALID_TUPLE);
std::copy(_tuples.begin() + nbeg,
_tuples.begin() + nend,
nodeTuples.begin() + size);
}
@ -1926,6 +1934,16 @@ ABCTuples specialDistribution(Info const& info, ABCTuples const& allTuples) {
// we bring the tuples abc back in the order a<b<c
for (auto &t: nodeTuples) std::sort(t.begin(), t.end());
#if ATRIP_DEBUG > 1
if (info.nodeId == 0)
std::cout << "checking for validity of " << nodeTuples.size() << std::endl;
const bool anyInvalid
= std::any_of(nodeTuples.begin(),
nodeTuples.end(),
[](ABCTuple const& t) { return t == INVALID_TUPLE; });
if (anyInvalid) throw "Some tuple is invalid in group-and-sort algorithm";
#endif
return nodeTuples;
}
@ -2850,6 +2868,7 @@ Atrip::Output Atrip::run(Atrip::Input const& in) {
const size_t Nv = in.ea->lens[0];
LOG(0,"Atrip") << "No: " << No << "\n";
LOG(0,"Atrip") << "Nv: " << Nv << "\n";
LOG(0,"Atrip") << "np: " << np << "\n";
// allocate the three scratches, see piecuch
std::vector<double> Tijk(No*No*No) // doubles only (see piecuch)

View File

@ -27,6 +27,7 @@ using PartialTuple = std::array<size_t, 2>;
using ABCTuples = std::vector<ABCTuple>;
constexpr ABCTuple FAKE_TUPLE = {0, 0, 0};
constexpr ABCTuple INVALID_TUPLE = {1, 1, 1};
// Tuples types:1 ends here
// [[file:~/atrip/atrip.org::*Distributing%20the%20tuples][Distributing the tuples:1]]
@ -86,11 +87,11 @@ struct RankInfo {
};
template <typename A>
std::vector<A> unique(std::vector<A> const &xs) {
A unique(A const &xs) {
auto result = xs;
std::sort(result.begin(), result.end());
auto const& last = std::unique(result.begin(), result.end());
result.erase(last, result.end());
std::sort(std::begin(result), std::end(result));
auto const& last = std::unique(std::begin(result), std::end(result));
result.erase(last, std::end(result));
return result;
}
@ -207,29 +208,25 @@ namespace group_and_sort {
// Provides the node on which the slice-element is found
// Right now we distribute the slices in a round robin fashion
// over the different nodes (NOTE: not mpi ranks but nodes)
size_t isOnNode(size_t tuple, size_t nodes) { return tuple % nodes; }
inline
size_t isOnNode(size_t tuple, size_t nNodes) { return tuple % nNodes; }
// return the node (or all nodes) where the elements of this
// tuple are located
std::vector<size_t> getTupleNodes(ABCTuple const& t, size_t nNodes) {
std::vector<size_t>
nTuple = { isOnNode(t[0], nNodes)
, isOnNode(t[1], nNodes)
, isOnNode(t[2], nNodes)
};
return unique(nTuple);
}
struct Info {
size_t nNodes;
size_t nodeId;
};
// return the node (or all nodes) where the elements of this
// tuple are located
std::vector<size_t> getTupleNodes(ABCTuple t, size_t nNodes) {
std::vector<size_t> result;
ABCTuple nTuple = { isOnNode(t[0], nNodes)
, isOnNode(t[1], nNodes)
, isOnNode(t[2], nNodes)
};
std::sort(nTuple.begin(), nTuple.end());
ABCTuple::iterator it = std::unique(nTuple.begin(), nTuple.end());
result.resize(it - nTuple.begin());
std::copy(nTuple.begin(), it, result.begin());
return result;
}
// Utils:1 ends here
// [[file:~/atrip/atrip.org::*Distribution][Distribution:1]]
@ -238,28 +235,42 @@ ABCTuples specialDistribution(Info const& info, ABCTuples const& allTuples) {
ABCTuples nodeTuples;
size_t const nNodes(info.nNodes);
std::map< size_t /* nodeId */, ABCTuples >
container1d, container2d, container3d;
std::vector<ABCTuples>
container1d(nNodes)
, container2d(nNodes * nNodes)
, container3d(nNodes * nNodes * nNodes)
;
if (info.nodeId == 0)
std::cout << "\tGoing through all "
<< allTuples.size()
<< " tuples in "
<< nNodes
<< " nodes\n";
// build container-n-d's
for (auto const& t: allTuples) {
// one which node(s) are the tuple elements located...
// put them into the right container
auto const _nodes = getTupleNodes(t, nNodes);
switch (_nodes.size()) {
case 1:
container1d[_nodes[0]].push_back(t);
break;
case 2:
container2d[ _nodes[0]
+ nNodes * _nodes[1]
+ _nodes[1] * nNodes
].push_back(t);
break;
case 3:
container3d[ _nodes[0]
+ nNodes * _nodes[1]
+ nNodes * nNodes * _nodes[2]
+ _nodes[1] * nNodes
+ _nodes[2] * nNodes * nNodes
].push_back(t);
break;
}
}
if (info.nodeId == 0)
@ -267,43 +278,42 @@ ABCTuples specialDistribution(Info const& info, ABCTuples const& allTuples) {
// DISTRIBUTE 1-d containers
// every tuple which is only located at one node belongs to this node
{
auto const& _tuplesVec = container1d[info.nodeId];
nodeTuples.resize(_tuplesVec.size());
std::copy(_tuplesVec.begin(), _tuplesVec.end(), nodeTuples.begin());
auto const& _tuples = container1d[info.nodeId];
nodeTuples.resize(_tuples.size(), INVALID_TUPLE);
std::copy(_tuples.begin(), _tuples.end(), nodeTuples.begin());
}
if (info.nodeId == 0)
std::cout << "\tBuilding 2-d containers\n";
// DISTRIBUTE 2-d containers
//the tuples which are located at two nodes are half/half given to these nodes
for (auto const& m: container2d) {
for (size_t yx = 0; yx < container2d.size(); yx++) {
auto const& _tuplesVec = m.second;
auto const& _tuples = container2d[yx];
const
size_t idx = m.first % nNodes
// remeber: m.first = idy * nNodes + idx
, idy = m.first / nNodes
, n_half = _tuplesVec.size() / 2
size_t idx = yx % nNodes
// remeber: yx = idy * nNodes + idx
, idy = yx / nNodes
, n_half = _tuples.size() / 2
, size = nodeTuples.size()
;
size_t nextra, nbegin, nend;
size_t nbeg, nend;
if (info.nodeId == idx) {
nextra = n_half;
nbegin = 0 * n_half;
nbeg = 0 * n_half;
nend = n_half;
} else if (info.nodeId == idy) {
nextra = _tuplesVec.size() - n_half;
nbegin = 1 * n_half;
nend = _tuplesVec.size();
nbeg = 1 * n_half;
nend = _tuples.size();
} else {
// either idx or idy is my node
continue;
}
nodeTuples.resize(size + nextra);
std::copy(_tuplesVec.begin() + nbegin,
_tuplesVec.begin() + nend,
size_t const nextra = nend - nbeg;
nodeTuples.resize(size + nextra, INVALID_TUPLE);
std::copy(_tuples.begin() + nbeg,
_tuples.begin() + nend,
nodeTuples.begin() + size);
}
@ -311,39 +321,37 @@ ABCTuples specialDistribution(Info const& info, ABCTuples const& allTuples) {
if (info.nodeId == 0)
std::cout << "\tBuilding 3-d containers\n";
// DISTRIBUTE 3-d containers
for (auto const& m: container3d){
auto const& _tuplesVec = m.second;
for (size_t zyx = 0; zyx < container3d.size(); zyx++) {
auto const& _tuples = container3d[zyx];
const
size_t idx = m.first % nNodes
, idy = (m.first / nNodes) % nNodes
// remember: m.first = idx + idy * nNodes + idz * nNodes^2
, idz = m.first / nNodes / nNodes
, n_third = _tuplesVec.size() / 3
size_t idx = zyx % nNodes
, idy = (zyx / nNodes) % nNodes
// remember: zyx = idx + idy * nNodes + idz * nNodes^2
, idz = zyx / nNodes / nNodes
, n_third = _tuples.size() / 3
, size = nodeTuples.size()
;
size_t nextra, nbegin, nend;
size_t nbeg, nend;
if (info.nodeId == idx) {
nextra = n_third;
nbegin = 0 * n_third;
nend = nextra;
nbeg = 0 * n_third;
nend = 1 * n_third;
} else if (info.nodeId == idy) {
nextra = n_third;
nbegin = 1 * n_third;
nend = 2 * nextra;
nbeg = 1 * n_third;
nend = 2 * n_third;
} else if (info.nodeId == idz) {
nextra = _tuplesVec.size() - 2 * n_third;
nbegin = 2 * n_third;
nend = _tuplesVec.size();
nbeg = 2 * n_third;
nend = _tuples.size();
} else {
// either idx or idy or idz is my node
continue;
}
nodeTuples.resize(size + nextra);
std::copy(_tuplesVec.begin() + nbegin,
_tuplesVec.begin() + nend,
size_t const nextra = nend - nbeg;
nodeTuples.resize(size + nextra, INVALID_TUPLE);
std::copy(_tuples.begin() + nbeg,
_tuples.begin() + nend,
nodeTuples.begin() + size);
}
@ -387,6 +395,16 @@ ABCTuples specialDistribution(Info const& info, ABCTuples const& allTuples) {
// we bring the tuples abc back in the order a<b<c
for (auto &t: nodeTuples) std::sort(t.begin(), t.end());
#if ATRIP_DEBUG > 1
if (info.nodeId == 0)
std::cout << "checking for validity of " << nodeTuples.size() << std::endl;
const bool anyInvalid
= std::any_of(nodeTuples.begin(),
nodeTuples.end(),
[](ABCTuple const& t) { return t == INVALID_TUPLE; });
if (anyInvalid) throw "Some tuple is invalid in group-and-sort algorithm";
#endif
return nodeTuples;
}
@ -497,9 +515,7 @@ if (computeDistribution) {
// Main:4 ends here
// [[file:~/atrip/atrip.org::*Main][Main:5]]
LOG(1,"Atrip") << "scattering tuples \n";
return result;
return result;
}
// Main:5 ends here

View File

@ -33,6 +33,7 @@ Atrip::Output Atrip::run(Atrip::Input const& in) {
const size_t Nv = in.ea->lens[0];
LOG(0,"Atrip") << "No: " << No << "\n";
LOG(0,"Atrip") << "Nv: " << Nv << "\n";
LOG(0,"Atrip") << "np: " << np << "\n";
// allocate the three scratches, see piecuch
std::vector<double> Tijk(No*No*No) // doubles only (see piecuch)