Fix math problems with rst
This commit is contained in:
parent
c6eb805078
commit
a2470048fb
24
atrip.org
24
atrip.org
@ -55,11 +55,13 @@ As an example, for the doubles amplitudes \( T^{ab}_{ij} \), one need two kinds
|
||||
** Location
|
||||
|
||||
Every slice set, for instance,
|
||||
\( S_k = \left\{
|
||||
$$
|
||||
S_k = \left\{
|
||||
a \mapsto \mathsf{T}(a)^{b}_{ij}
|
||||
\mid
|
||||
a \in A_k
|
||||
\right\} \)
|
||||
\right\}
|
||||
$$
|
||||
where \( A_k \) is some subset of
|
||||
\( \mathsf{N}_\mathrm{v} \),
|
||||
gets stored in some rank \( k \).
|
||||
@ -81,17 +83,17 @@ is therefore a simple structure:
|
||||
Due to the permutation operators in the equations
|
||||
it is noticeable that for every one dimensional
|
||||
slice and triple \( (a,b,c) \)
|
||||
\begin{equation*}
|
||||
$$
|
||||
a \mapsto \mathsf{t}(a)
|
||||
\end{equation*}
|
||||
$$
|
||||
one needs at the same time
|
||||
\( \mathsf{t}(a) \),
|
||||
\( \mathsf{t}(b) \) and
|
||||
\( \mathsf{t}(c) \).
|
||||
For two dimensional slices, i.e., slices of the form
|
||||
\begin{equation*}
|
||||
$$
|
||||
(a,b) \mapsto \mathsf{t}(a,b)
|
||||
\end{equation*}
|
||||
$$
|
||||
one needs in the equations the slices
|
||||
\( \mathsf{t}(a,b) \),
|
||||
\( \mathsf{t}(b,c) \) and
|
||||
@ -1685,10 +1687,8 @@ three for loops creating tuples of the sort
|
||||
\)
|
||||
|
||||
This means,
|
||||
\( (1, 2, 3)
|
||||
, (1, 1, 3)
|
||||
, (1, 2, 2)
|
||||
\) are acceptable tuples wherease \( (2, 1, 1) \) and \( (1, 1, 1) \) are not.
|
||||
\( (1, 2, 3) , (1, 1, 3) , (1, 2, 2) \)
|
||||
are acceptable tuples wherease \( (2, 1, 1) \) and \( (1, 1, 1) \) are not.
|
||||
|
||||
|
||||
#+begin_src c++ :tangle (atrip-tuples-h)
|
||||
@ -2144,7 +2144,7 @@ Every rank gets =tuplesPerRankLocal= tuples and
|
||||
the =nodeTuples= vector is now homogeneous and divisible by the number
|
||||
of ranks per node in our node.
|
||||
Therefore, the =displacements= are simply the vector
|
||||
\begin{equation*}
|
||||
$$
|
||||
\left\{
|
||||
k * \mathrm{tuplesPerNodeLocal}
|
||||
\mid
|
||||
@ -2154,7 +2154,7 @@ Therefore, the =displacements= are simply the vector
|
||||
, \#\text{ranks in node} - 1
|
||||
\right\}
|
||||
\right\}
|
||||
\end{equation*}
|
||||
$$
|
||||
|
||||
and the =sendCounts= vector is simply the constant vector
|
||||
=tuplesPerRankLocal= of size =ranksPerNode=.
|
||||
|
||||
Loading…
Reference in New Issue
Block a user