Tanlge source files for complex

This commit is contained in:
Alejandro Gallo 2022-02-07 22:29:47 +01:00
parent 7f455d54fd
commit c2b1c78c67
12 changed files with 511 additions and 377 deletions

View File

@ -1,4 +1,4 @@
// [[file:../atrip.org::*Include header][Include header:1]] // [[file:~/cc4s/src/atrip/complex/atrip.org::*Include%20header][Include header:1]]
#pragma once #pragma once
#include <atrip/Atrip.hpp> #include <atrip/Atrip.hpp>

View File

@ -1,4 +1,4 @@
// [[file:../../atrip.org::*Atrip][Atrip:1]] // [[file:~/cc4s/src/atrip/complex/atrip.org::*Header][Header:1]]
#pragma once #pragma once
#include <sstream> #include <sstream>
#include <string> #include <string>
@ -15,8 +15,9 @@ namespace atrip {
static int np; static int np;
static void init(); static void init();
template <typename F=double>
struct Input { struct Input {
CTF::Tensor<double> *ei = nullptr CTF::Tensor<F> *ei = nullptr
, *ea = nullptr , *ea = nullptr
, *Tph = nullptr , *Tph = nullptr
, *Tpphh = nullptr , *Tpphh = nullptr
@ -27,13 +28,13 @@ namespace atrip {
int maxIterations = 0, iterationMod = -1, percentageMod = -1; int maxIterations = 0, iterationMod = -1, percentageMod = -1;
bool barrier = false; bool barrier = false;
bool chrono = false; bool chrono = false;
Input& with_epsilon_i(CTF::Tensor<double> * t) { ei = t; return *this; } Input& with_epsilon_i(CTF::Tensor<F> * t) { ei = t; return *this; }
Input& with_epsilon_a(CTF::Tensor<double> * t) { ea = t; return *this; } Input& with_epsilon_a(CTF::Tensor<F> * t) { ea = t; return *this; }
Input& with_Tai(CTF::Tensor<double> * t) { Tph = t; return *this; } Input& with_Tai(CTF::Tensor<F> * t) { Tph = t; return *this; }
Input& with_Tabij(CTF::Tensor<double> * t) { Tpphh = t; return *this; } Input& with_Tabij(CTF::Tensor<F> * t) { Tpphh = t; return *this; }
Input& with_Vabij(CTF::Tensor<double> * t) { Vpphh = t; return *this; } Input& with_Vabij(CTF::Tensor<F> * t) { Vpphh = t; return *this; }
Input& with_Vijka(CTF::Tensor<double> * t) { Vhhhp = t; return *this; } Input& with_Vijka(CTF::Tensor<F> * t) { Vhhhp = t; return *this; }
Input& with_Vabci(CTF::Tensor<double> * t) { Vppph = t; return *this; } Input& with_Vabci(CTF::Tensor<F> * t) { Vppph = t; return *this; }
Input& with_maxIterations(int i) { maxIterations = i; return *this; } Input& with_maxIterations(int i) { maxIterations = i; return *this; }
Input& with_iterationMod(int i) { iterationMod = i; return *this; } Input& with_iterationMod(int i) { iterationMod = i; return *this; }
Input& with_percentageMod(int i) { percentageMod = i; return *this; } Input& with_percentageMod(int i) { percentageMod = i; return *this; }
@ -44,8 +45,9 @@ namespace atrip {
struct Output { struct Output {
double energy; double energy;
}; };
static Output run(Input const& in); template <typename F=double>
static Output run(Input<F> const& in);
}; };
} }
// Atrip:1 ends here // Header:1 ends here

View File

@ -1,6 +1,9 @@
// [[file:../../atrip.org::*Blas][Blas:1]] // [[file:~/cc4s/src/atrip/complex/atrip.org::*Blas][Blas:1]]
#pragma once #pragma once
namespace atrip { namespace atrip {
using Complex = std::complex<double>;
extern "C" { extern "C" {
void dgemm_( void dgemm_(
const char *transa, const char *transa,
@ -9,14 +12,73 @@ namespace atrip {
const int *n, const int *n,
const int *k, const int *k,
double *alpha, double *alpha,
const double *A, const double *a,
const int *lda, const int *lda,
const double *B, const double *b,
const int *ldb, const int *ldb,
double *beta, double *beta,
double *C, double *c,
const int *ldc
);
void zgemm_(
const char *transa,
const char *transb,
const int *m,
const int *n,
const int *k,
Complex *alpha,
const Complex *A,
const int *lda,
const Complex *B,
const int *ldb,
Complex *beta,
Complex *C,
const int *ldc const int *ldc
); );
} }
template <typename F=double>
void xgemm(const char *transa,
const char *transb,
const int *m,
const int *n,
const int *k,
F *alpha,
const F *A,
const int *lda,
const F *B,
const int *ldb,
F *beta,
F *C,
const int *ldc) {
dgemm_(transa, transb,
m, n, k,
alpha, A, lda,
B, ldb, beta,
C, ldc);
}
template <>
void xgemm(const char *transa,
const char *transb,
const int *m,
const int *n,
const int *k,
Complex *alpha,
const Complex *A,
const int *lda,
const Complex *B,
const int *ldb,
Complex *beta,
Complex *C,
const int *ldc) {
zgemm_(transa, transb,
m, n, k,
alpha, A, lda,
B, ldb, beta,
C, ldc);
}
} }
// Blas:1 ends here // Blas:1 ends here

View File

@ -1,9 +1,11 @@
// [[file:../../atrip.org::*Macros][Macros:1]] // [[file:~/cc4s/src/atrip/complex/atrip.org::*Macros][Macros:1]]
#pragma once #pragma once
#include <functional> #include <functional>
#define ATRIP_BENCHMARK #define ATRIP_BENCHMARK
//#define ATRIP_DONT_SLICE //#define ATRIP_DONT_SLICE
#define ATRIP_DEBUG 1 #ifndef ATRIP_DEBUG
# define ATRIP_DEBUG 1
#endif
//#define ATRIP_WORKLOAD_DUMP //#define ATRIP_WORKLOAD_DUMP
#define ATRIP_USE_DGEMM #define ATRIP_USE_DGEMM
//#define ATRIP_PRINT_TUPLES //#define ATRIP_PRINT_TUPLES
@ -60,20 +62,20 @@
#endif #endif
// Macros:1 ends here // Macros:1 ends here
// [[file:../../atrip.org::*Macros][Macros:2]] // [[file:~/cc4s/src/atrip/complex/atrip.org::*Macros][Macros:2]]
#ifndef LOG #ifndef LOG
#define LOG(level, name) if (Atrip::rank == 0) std::cout << name << ": " #define LOG(level, name) if (Atrip::rank == 0) std::cout << name << ": "
#endif #endif
// Macros:2 ends here // Macros:2 ends here
// [[file:../../atrip.org::*Macros][Macros:3]] // [[file:~/cc4s/src/atrip/complex/atrip.org::*Macros][Macros:3]]
#ifdef ATRIP_NO_OUTPUT #ifdef ATRIP_NO_OUTPUT
# undef LOG # undef LOG
# define LOG(level, name) if (false) std::cout << name << ": " # define LOG(level, name) if (false) std::cout << name << ": "
#endif #endif
// Macros:3 ends here // Macros:3 ends here
// [[file:../../atrip.org::IterationDescriptor][IterationDescriptor]] // [[file:~/cc4s/src/atrip/complex/atrip.org::IterationDescriptor][IterationDescriptor]]
namespace atrip { namespace atrip {
struct IterationDescription; struct IterationDescription;

View File

@ -1,4 +1,4 @@
// [[file:../../atrip.org::*Equations][Equations:1]] // [[file:~/cc4s/src/atrip/complex/atrip.org::*Equations][Equations:1]]
#pragma once #pragma once
#include<atrip/Slice.hpp> #include<atrip/Slice.hpp>
@ -6,14 +6,15 @@
namespace atrip { namespace atrip {
template <typename F=double>
double getEnergyDistinct double getEnergyDistinct
( const double epsabc ( const F epsabc
, std::vector<double> const& epsi , std::vector<F> const& epsi
, std::vector<double> const& Tijk_ , std::vector<F> const& Tijk_
, std::vector<double> const& Zijk_ , std::vector<F> const& Zijk_
) { ) {
constexpr size_t blockSize=16; constexpr size_t blockSize=16;
double energy(0.); F energy(0.);
const size_t No = epsi.size(); const size_t No = epsi.size();
for (size_t kk=0; kk<No; kk+=blockSize){ for (size_t kk=0; kk<No; kk+=blockSize){
const size_t kend( std::min(No, kk+blockSize) ); const size_t kend( std::min(No, kk+blockSize) );
@ -22,52 +23,64 @@ namespace atrip {
for (size_t ii(jj); ii<No; ii+=blockSize){ for (size_t ii(jj); ii<No; ii+=blockSize){
const size_t iend( std::min( No, ii+blockSize) ); const size_t iend( std::min( No, ii+blockSize) );
for (size_t k(kk); k < kend; k++){ for (size_t k(kk); k < kend; k++){
const double ek(epsi[k]); const F ek(epsi[k]);
const size_t jstart = jj > k ? jj : k; const size_t jstart = jj > k ? jj : k;
for (size_t j(jstart); j < jend; j++){ for (size_t j(jstart); j < jend; j++){
const double ej(epsi[j]); F const ej(epsi[j]);
double facjk( j == k ? 0.5 : 1.0); F const facjk = j == k ? F(0.5) : F(1.0);
size_t istart = ii > j ? ii : j; size_t istart = ii > j ? ii : j;
for (size_t i(istart); i < iend; i++){ for (size_t i(istart); i < iend; i++){
const double ei(epsi[i]); const F
double facij ( i==j ? 0.5 : 1.0); ei(epsi[i])
double denominator(epsabc - ei - ej - ek); , facij = i == j ? F(0.5) : F(1.0)
double U(Zijk_[i + No*j + No*No*k]); , denominator(epsabc - ei - ej - ek)
double V(Zijk_[i + No*k + No*No*j]); , U(Zijk_[i + No*j + No*No*k])
double W(Zijk_[j + No*i + No*No*k]); , V(Zijk_[i + No*k + No*No*j])
double X(Zijk_[j + No*k + No*No*i]); , W(Zijk_[j + No*i + No*No*k])
double Y(Zijk_[k + No*i + No*No*j]); , X(Zijk_[j + No*k + No*No*i])
double Z(Zijk_[k + No*j + No*No*i]); , Y(Zijk_[k + No*i + No*No*j])
, Z(Zijk_[k + No*j + No*No*i])
double A(Tijk_[i + No*j + No*No*k]); , A(std::conj(Tijk_[i + No*j + No*No*k]))
double B(Tijk_[i + No*k + No*No*j]); , B(std::conj(Tijk_[i + No*k + No*No*j]))
double C(Tijk_[j + No*i + No*No*k]); , C(std::conj(Tijk_[j + No*i + No*No*k]))
double D(Tijk_[j + No*k + No*No*i]); , D(std::conj(Tijk_[j + No*k + No*No*i]))
double E(Tijk_[k + No*i + No*No*j]); , E(std::conj(Tijk_[k + No*i + No*No*j]))
double F(Tijk_[k + No*j + No*No*i]); , F(std::conj(Tijk_[k + No*j + No*No*i]))
double value(3.0*(A*U+B*V+C*W+D*X+E*Y+F*Z) , value
+((U+X+Y)-2.0*(V+W+Z))*(A+D+E) = 3.0 * ( A * U
+((V+W+Z)-2.0*(U+X+Y))*(B+C+F)); + B * V
energy += 2.0*value / denominator * facjk * facij; + C * W
+ D * X
+ E * Y
+ F * Z )
+ ( ( U + X + Y )
- 2.0 * ( V + W + Z )
) * ( A + D + E )
+ ( ( V + W + Z )
- 2.0 * ( U + X + Y )
) * ( B + C + F )
;
energy += 2.0 * value / denominator * facjk * facij;
} // i } // i
} // j } // j
} // k } // k
} // ii } // ii
} // jj } // jj
} // kk } // kk
return energy; return std::real(energy);
} }
template <typename F=double>
double getEnergySame double getEnergySame
( const double epsabc ( const F epsabc
, std::vector<double> const& epsi , std::vector<F> const& epsi
, std::vector<double> const& Tijk_ , std::vector<F> const& Tijk_
, std::vector<double> const& Zijk_ , std::vector<F> const& Zijk_
) { ) {
constexpr size_t blockSize = 16; constexpr size_t blockSize = 16;
const size_t No = epsi.size(); const size_t No = epsi.size();
double energy(0.); F energy = F(0.);
for (size_t kk=0; kk<No; kk+=blockSize){ for (size_t kk=0; kk<No; kk+=blockSize){
const size_t kend( std::min( kk+blockSize, No) ); const size_t kend( std::min( kk+blockSize, No) );
for (size_t jj(kk); jj<No; jj+=blockSize){ for (size_t jj(kk); jj<No; jj+=blockSize){
@ -75,42 +88,50 @@ namespace atrip {
for (size_t ii(jj); ii<No; ii+=blockSize){ for (size_t ii(jj); ii<No; ii+=blockSize){
const size_t iend( std::min( ii+blockSize, No) ); const size_t iend( std::min( ii+blockSize, No) );
for (size_t k(kk); k < kend; k++){ for (size_t k(kk); k < kend; k++){
const double ek(epsi[k]); const F ek(epsi[k]);
const size_t jstart = jj > k ? jj : k; const size_t jstart = jj > k ? jj : k;
for(size_t j(jstart); j < jend; j++){ for(size_t j(jstart); j < jend; j++){
const double facjk( j == k ? 0.5 : 1.0); const F facjk( j == k ? F(0.5) : F(1.0));
const double ej(epsi[j]); const F ej(epsi[j]);
const size_t istart = ii > j ? ii : j; const size_t istart = ii > j ? ii : j;
for(size_t i(istart); i < iend; i++){ for(size_t i(istart); i < iend; i++){
double ei(epsi[i]); const F
double facij ( i==j ? 0.5 : 1.0); ei(epsi[i])
double denominator(epsabc - ei - ej - ek); , facij ( i==j ? F(0.5) : F(1.0))
double U(Zijk_[i + No*j + No*No*k]); , denominator(epsabc - ei - ej - ek)
double V(Zijk_[j + No*k + No*No*i]); , U(Zijk_[i + No*j + No*No*k])
double W(Zijk_[k + No*i + No*No*j]); , V(Zijk_[j + No*k + No*No*i])
double A(Tijk_[i + No*j + No*No*k]); , W(Zijk_[k + No*i + No*No*j])
double B(Tijk_[j + No*k + No*No*i]); , A(std::conj(Tijk_[i + No*j + No*No*k]))
double C(Tijk_[k + No*i + No*No*j]); , B(std::conj(Tijk_[j + No*k + No*No*i]))
double value(3.0*( A*U + B*V + C*W) - (A+B+C)*(U+V+W)); , C(std::conj(Tijk_[k + No*i + No*No*j]))
energy += 2.0*value / denominator * facjk * facij; , value
= F(3.0) * ( A * U
+ B * V
+ C * W
)
- ( A + B + C ) * ( U + V + W )
;
energy += F(2.0) * value / denominator * facjk * facij;
} // i } // i
} // j } // j
} // k } // k
} // ii } // ii
} // jj } // jj
} // kk } // kk
return energy; return std::real(energy);
} }
template <typename F=double>
void singlesContribution void singlesContribution
( size_t No ( size_t No
, size_t Nv , size_t Nv
, const ABCTuple &abc , const ABCTuple &abc
, double const* Tph , F const* Tph
, double const* VABij , F const* VABij
, double const* VACij , F const* VACij
, double const* VBCij , F const* VBCij
, double *Zijk , F *Zijk
) { ) {
const size_t a(abc[0]), b(abc[1]), c(abc[2]); const size_t a(abc[0]), b(abc[1]), c(abc[2]);
for (size_t k=0; k < No; k++) for (size_t k=0; k < No; k++)
@ -125,31 +146,32 @@ namespace atrip {
} }
} }
template <typename F=double>
void doublesContribution void doublesContribution
( const ABCTuple &abc ( const ABCTuple &abc
, size_t const No , size_t const No
, size_t const Nv , size_t const Nv
// -- VABCI // -- VABCI
, double const* VABph , F const* VABph
, double const* VACph , F const* VACph
, double const* VBCph , F const* VBCph
, double const* VBAph , F const* VBAph
, double const* VCAph , F const* VCAph
, double const* VCBph , F const* VCBph
// -- VHHHA // -- VHHHA
, double const* VhhhA , F const* VhhhA
, double const* VhhhB , F const* VhhhB
, double const* VhhhC , F const* VhhhC
// -- TA // -- TA
, double const* TAphh , F const* TAphh
, double const* TBphh , F const* TBphh
, double const* TCphh , F const* TCphh
// -- TABIJ // -- TABIJ
, double const* TABhh , F const* TABhh
, double const* TAChh , F const* TAChh
, double const* TBChh , F const* TBChh
// -- TIJK // -- TIJK
, double *Tijk , F *Tijk
, atrip::Timings& chrono , atrip::Timings& chrono
) { ) {
@ -169,7 +191,7 @@ namespace atrip {
} \ } \
t_reorder.stop(); t_reorder.stop();
#define DGEMM_PARTICLES(__A, __B) \ #define DGEMM_PARTICLES(__A, __B) \
atrip::dgemm_( "T" \ atrip::xgemm<F>( "T" \
, "N" \ , "N" \
, (int const*)&NoNo \ , (int const*)&NoNo \
, (int const*)&No \ , (int const*)&No \
@ -184,7 +206,7 @@ namespace atrip {
, (int const*)&NoNo \ , (int const*)&NoNo \
); );
#define DGEMM_HOLES(__A, __B, __TRANSB) \ #define DGEMM_HOLES(__A, __B, __TRANSB) \
atrip::dgemm_( "N" \ atrip::xgemm<F>( "N" \
, __TRANSB \ , __TRANSB \
, (int const*)&NoNo \ , (int const*)&NoNo \
, (int const*)&No \ , (int const*)&No \
@ -198,10 +220,17 @@ namespace atrip {
, _t_buffer.data() \ , _t_buffer.data() \
, (int const*)&NoNo \ , (int const*)&NoNo \
); );
#define MAYBE_CONJ(_conj, _buffer) \
if (traits::isComplex<F>()) { \
for (size_t __i = 0; __i < NoNoNo; ++__i) \
_conj[__i] = std::conj(_buffer[__i]); \
} else { \
for (size_t __i = 0; __i < NoNoNo; ++__i) \
_conj[__i] = _buffer[__i]; \
}
using F = double;
const size_t NoNoNo = No*NoNo; const size_t NoNoNo = No*NoNo;
std::vector<double> _t_buffer; std::vector<F> _t_buffer;
_t_buffer.reserve(NoNoNo); _t_buffer.reserve(NoNoNo);
F one{1.0}, m_one{-1.0}, zero{0.0}; F one{1.0}, m_one{-1.0}, zero{0.0};
@ -214,38 +243,48 @@ namespace atrip {
chrono["doubles:holes"].start(); chrono["doubles:holes"].start();
{ // Holes part ============================================================ { // Holes part ============================================================
std::vector<F> _vhhh(NoNoNo);
// VhhhC[i + k*No + L*NoNo] * TABhh[L + j*No]; H1 // VhhhC[i + k*No + L*NoNo] * TABhh[L + j*No]; H1
MAYBE_CONJ(_vhhh, VhhhC)
chrono["doubles:holes:1"].start(); chrono["doubles:holes:1"].start();
DGEMM_HOLES(VhhhC, TABhh, "N") DGEMM_HOLES(_vhhh.data(), TABhh, "N")
REORDER(i, k, j) REORDER(i, k, j)
chrono["doubles:holes:1"].stop(); chrono["doubles:holes:1"].stop();
// VhhhC[j + k*No + L*NoNo] * TABhh[i + L*No]; H0 // VhhhC[j + k*No + L*NoNo] * TABhh[i + L*No]; H0
chrono["doubles:holes:2"].start(); chrono["doubles:holes:2"].start();
DGEMM_HOLES(VhhhC, TABhh, "T") DGEMM_HOLES(_vhhh.data(), TABhh, "T")
REORDER(j, k, i) REORDER(j, k, i)
chrono["doubles:holes:2"].stop(); chrono["doubles:holes:2"].stop();
// VhhhB[i + j*No + L*NoNo] * TAChh[L + k*No]; H5 // VhhhB[i + j*No + L*NoNo] * TAChh[L + k*No]; H5
MAYBE_CONJ(_vhhh, VhhhB)
chrono["doubles:holes:3"].start(); chrono["doubles:holes:3"].start();
DGEMM_HOLES(VhhhB, TAChh, "N") DGEMM_HOLES(_vhhh.data(), TAChh, "N")
REORDER(i, j, k) REORDER(i, j, k)
chrono["doubles:holes:3"].stop(); chrono["doubles:holes:3"].stop();
// VhhhB[k + j*No + L*NoNo] * TAChh[i + L*No]; H3 // VhhhB[k + j*No + L*NoNo] * TAChh[i + L*No]; H3
chrono["doubles:holes:4"].start(); chrono["doubles:holes:4"].start();
DGEMM_HOLES(VhhhB, TAChh, "T") DGEMM_HOLES(_vhhh.data(), TAChh, "T")
REORDER(k, j, i) REORDER(k, j, i)
chrono["doubles:holes:4"].stop(); chrono["doubles:holes:4"].stop();
// VhhhA[j + i*No + L*NoNo] * TBChh[L + k*No]; H1 // VhhhA[j + i*No + L*NoNo] * TBChh[L + k*No]; H1
MAYBE_CONJ(_vhhh, VhhhA)
chrono["doubles:holes:5"].start(); chrono["doubles:holes:5"].start();
DGEMM_HOLES(VhhhA, TBChh, "N") DGEMM_HOLES(_vhhh.data(), TBChh, "N")
REORDER(j, i, k) REORDER(j, i, k)
chrono["doubles:holes:5"].stop(); chrono["doubles:holes:5"].stop();
// VhhhA[k + i*No + L*NoNo] * TBChh[j + L*No]; H4 // VhhhA[k + i*No + L*NoNo] * TBChh[j + L*No]; H4
chrono["doubles:holes:6"].start(); chrono["doubles:holes:6"].start();
DGEMM_HOLES(VhhhA, TBChh, "T") DGEMM_HOLES(_vhhh.data(), TBChh, "T")
REORDER(k, i, j) REORDER(k, i, j)
chrono["doubles:holes:6"].stop(); chrono["doubles:holes:6"].stop();
} }
chrono["doubles:holes"].stop(); chrono["doubles:holes"].stop();
#undef MAYBE_CONJ
chrono["doubles:particles"].start(); chrono["doubles:particles"].start();
{ // Particle part ========================================================= { // Particle part =========================================================

View File

@ -1,4 +1,4 @@
// [[file:../../atrip.org::*The rank mapping][The rank mapping:1]] // [[file:~/cc4s/src/atrip/complex/atrip.org::*The%20rank%20mapping][The rank mapping:1]]
#pragma once #pragma once
#include <vector> #include <vector>
@ -7,6 +7,8 @@
#include <atrip/Slice.hpp> #include <atrip/Slice.hpp>
namespace atrip { namespace atrip {
template <typename F=double>
struct RankMap { struct RankMap {
std::vector<size_t> const lengths; std::vector<size_t> const lengths;
@ -19,7 +21,7 @@ namespace atrip {
1UL, std::multiplies<size_t>())) 1UL, std::multiplies<size_t>()))
{ assert(lengths.size() <= 2); } { assert(lengths.size() <= 2); }
size_t find(Slice::Location const& p) const noexcept { size_t find(typename Slice<F>::Location const& p) const noexcept {
return p.source * np + p.rank; return p.source * np + p.rank;
} }
@ -39,10 +41,10 @@ namespace atrip {
return source == nSources() && isPaddingRank(rank); return source == nSources() && isPaddingRank(rank);
} }
Slice::Location typename Slice<F>::Location
find(ABCTuple const& abc, Slice::Type sliceType) const noexcept { find(ABCTuple const& abc, typename Slice<F>::Type sliceType) const noexcept {
// tuple = {11, 8} when abc = {11, 8, 9} and sliceType = AB // tuple = {11, 8} when abc = {11, 8, 9} and sliceType = AB
const auto tuple = Slice::subtupleBySlice(abc, sliceType); const auto tuple = Slice<F>::subtupleBySlice(abc, sliceType);
const size_t index const size_t index
= tuple[0] = tuple[0]

View File

@ -1,4 +1,4 @@
// [[file:../../atrip.org::*The slice][The slice:1]] // [[file:~/cc4s/src/atrip/complex/atrip.org::*The%20slice][The slice:1]]
#pragma once #pragma once
#include <iostream> #include <iostream>
#include <algorithm> #include <algorithm>
@ -7,16 +7,26 @@
#include <atrip/Tuples.hpp> #include <atrip/Tuples.hpp>
#include <atrip/Utils.hpp> #include <atrip/Utils.hpp>
#include <atrip/Blas.hpp>
namespace atrip { namespace atrip {
namespace traits {
template <typename FF> bool isComplex() { return false; };
template <> bool isComplex<Complex>() { return true; };
namespace mpi {
template <typename FF> MPI_Datatype datatypeOf(void);
template <> MPI_Datatype datatypeOf<double>() { return MPI_DOUBLE; }
template <> MPI_Datatype datatypeOf<Complex>() { return MPI_DOUBLE_COMPLEX; }
}
}
template <typename F=double>
struct Slice { struct Slice {
using F = double;
// The slice:1 ends here // The slice:1 ends here
// [[file:../../atrip.org::*The slice][The slice:2]] // [[file:~/cc4s/src/atrip/complex/atrip.org::*The%20slice][The slice:2]]
// ASSOCIATED TYPES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // ASSOCIATED TYPES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
struct Location { size_t rank; size_t source; }; struct Location { size_t rank; size_t source; };
@ -93,8 +103,8 @@ struct Slice {
// DATABASE ==========================================================={{{1 // DATABASE ==========================================================={{{1
struct LocalDatabaseElement { struct LocalDatabaseElement {
Slice::Name name; Slice<F>::Name name;
Slice::Info info; Slice<F>::Info info;
}; };
using LocalDatabase = std::vector<LocalDatabaseElement>; using LocalDatabase = std::vector<LocalDatabaseElement>;
using Database = LocalDatabase; using Database = LocalDatabase;
@ -117,7 +127,7 @@ struct Slice {
constexpr int n = 2; constexpr int n = 2;
// create a sliceLocation to measure in the current architecture // create a sliceLocation to measure in the current architecture
// the packing of the struct // the packing of the struct
Slice::Location measure; Slice<F>::Location measure;
MPI_Datatype dt; MPI_Datatype dt;
const std::vector<int> lengths(n, 1); const std::vector<int> lengths(n, 1);
const MPI_Datatype types[n] = {usizeDt(), usizeDt()}; const MPI_Datatype types[n] = {usizeDt(), usizeDt()};
@ -141,7 +151,7 @@ struct Slice {
static MPI_Datatype sliceInfo () { static MPI_Datatype sliceInfo () {
constexpr int n = 5; constexpr int n = 5;
MPI_Datatype dt; MPI_Datatype dt;
Slice::Info measure; Slice<F>::Info measure;
const std::vector<int> lengths(n, 1); const std::vector<int> lengths(n, 1);
const MPI_Datatype types[n] const MPI_Datatype types[n]
= { vector(2, usizeDt()) = { vector(2, usizeDt())
@ -213,10 +223,10 @@ struct Slice {
* It is important here to return a reference to a Slice * It is important here to return a reference to a Slice
* not to accidentally copy the associated buffer of the slice. * not to accidentally copy the associated buffer of the slice.
*/ */
static Slice& findOneByType(std::vector<Slice> &slices, Slice::Type type) { static Slice<F>& findOneByType(std::vector<Slice<F>> &slices, Slice<F>::Type type) {
const auto sliceIt const auto sliceIt
= std::find_if(slices.begin(), slices.end(), = std::find_if(slices.begin(), slices.end(),
[&type](Slice const& s) { [&type](Slice<F> const& s) {
return type == s.info.type; return type == s.info.type;
}); });
WITH_CRAZY_DEBUG WITH_CRAZY_DEBUG
@ -231,11 +241,11 @@ struct Slice {
* Check if an info has * Check if an info has
* *
*/ */
static std::vector<Slice*> hasRecycledReferencingToIt static std::vector<Slice<F>*> hasRecycledReferencingToIt
( std::vector<Slice> &slices ( std::vector<Slice<F>> &slices
, Info const& info , Info const& info
) { ) {
std::vector<Slice*> result; std::vector<Slice<F>*> result;
for (auto& s: slices) for (auto& s: slices)
if ( s.info.recycling == info.type if ( s.info.recycling == info.type
@ -246,11 +256,11 @@ struct Slice {
return result; return result;
} }
static Slice& static Slice<F>&
findRecycledSource (std::vector<Slice> &slices, Slice::Info info) { findRecycledSource (std::vector<Slice<F>> &slices, Slice<F>::Info info) {
const auto sliceIt const auto sliceIt
= std::find_if(slices.begin(), slices.end(), = std::find_if(slices.begin(), slices.end(),
[&info](Slice const& s) { [&info](Slice<F> const& s) {
return info.recycling == s.info.type return info.recycling == s.info.type
&& info.tuple == s.info.tuple && info.tuple == s.info.tuple
&& State::Recycled != s.info.state && State::Recycled != s.info.state
@ -270,15 +280,15 @@ struct Slice {
return *sliceIt; return *sliceIt;
} }
static Slice& findByTypeAbc static Slice<F>& findByTypeAbc
( std::vector<Slice> &slices ( std::vector<Slice<F>> &slices
, Slice::Type type , Slice<F>::Type type
, ABCTuple const& abc , ABCTuple const& abc
) { ) {
const auto tuple = Slice::subtupleBySlice(abc, type); const auto tuple = Slice<F>::subtupleBySlice(abc, type);
const auto sliceIt const auto sliceIt
= std::find_if(slices.begin(), slices.end(), = std::find_if(slices.begin(), slices.end(),
[&type, &tuple](Slice const& s) { [&type, &tuple](Slice<F> const& s) {
return type == s.info.type return type == s.info.type
&& tuple == s.info.tuple && tuple == s.info.tuple
; ;
@ -298,11 +308,11 @@ struct Slice {
return *sliceIt; return *sliceIt;
} }
static Slice& findByInfo(std::vector<Slice> &slices, static Slice<F>& findByInfo(std::vector<Slice<F>> &slices,
Slice::Info const& info) { Slice<F>::Info const& info) {
const auto sliceIt const auto sliceIt
= std::find_if(slices.begin(), slices.end(), = std::find_if(slices.begin(), slices.end(),
[&info](Slice const& s) { [&info](Slice<F> const& s) {
// TODO: maybe implement comparison in Info struct // TODO: maybe implement comparison in Info struct
return info.type == s.info.type return info.type == s.info.type
&& info.state == s.info.state && info.state == s.info.state
@ -448,13 +458,15 @@ struct Slice {
}; // struct Slice }; // struct Slice
std::ostream& operator<<(std::ostream& out, Slice::Location const& v) { template <typename F=double>
std::ostream& operator<<(std::ostream& out, typename Slice<F>::Location const& v) {
// TODO: remove me // TODO: remove me
out << "{.r(" << v.rank << "), .s(" << v.source << ")};"; out << "{.r(" << v.rank << "), .s(" << v.source << ")};";
return out; return out;
} }
std::ostream& operator<<(std::ostream& out, Slice::Info const& i) { template <typename F=double>
std::ostream& operator<<(std::ostream& out, typename Slice<F>::Info const& i) {
out << "«t" << i.type << ", s" << i.state << "»" out << "«t" << i.type << ", s" << i.state << "»"
<< " ⊙ {" << i.from.rank << ", " << i.from.source << "}" << " ⊙ {" << i.from.rank << ", " << i.from.source << "}"
<< " ∴ {" << i.tuple[0] << ", " << i.tuple[1] << "}" << " ∴ {" << i.tuple[0] << ", " << i.tuple[1] << "}"

View File

@ -1,4 +1,4 @@
// [[file:../../atrip.org::*The slice union][The slice union:1]] // [[file:~/cc4s/src/atrip/complex/atrip.org::*The%20slice%20union][The slice union:1]]
#pragma once #pragma once
#include <atrip/Debug.hpp> #include <atrip/Debug.hpp>
#include <atrip/Slice.hpp> #include <atrip/Slice.hpp>
@ -6,8 +6,8 @@
namespace atrip { namespace atrip {
template <typename F=double>
struct SliceUnion { struct SliceUnion {
using F = double;
using Tensor = CTF::Tensor<F>; using Tensor = CTF::Tensor<F>;
virtual void virtual void
@ -20,7 +20,7 @@ namespace atrip {
* This means that there can be at most one slice with a given Ty_x_Tu. * This means that there can be at most one slice with a given Ty_x_Tu.
*/ */
void checkForDuplicates() const { void checkForDuplicates() const {
std::vector<Slice::Ty_x_Tu> tytus; std::vector<typename Slice<F>::Ty_x_Tu> tytus;
for (auto const& s: slices) { for (auto const& s: slices) {
if (s.isFree()) continue; if (s.isFree()) continue;
tytus.push_back({s.info.type, s.info.tuple}); tytus.push_back({s.info.type, s.info.tuple});
@ -33,13 +33,13 @@ namespace atrip {
} }
std::vector<Slice::Ty_x_Tu> neededSlices(ABCTuple const& abc) { std::vector<typename Slice<F>::Ty_x_Tu> neededSlices(ABCTuple const& abc) {
std::vector<Slice::Ty_x_Tu> needed(sliceTypes.size()); std::vector<typename Slice<F>::Ty_x_Tu> needed(sliceTypes.size());
// build the needed vector // build the needed vector
std::transform(sliceTypes.begin(), sliceTypes.end(), std::transform(sliceTypes.begin(), sliceTypes.end(),
needed.begin(), needed.begin(),
[&abc](Slice::Type const type) { [&abc](typename Slice<F>::Type const type) {
auto tuple = Slice::subtupleBySlice(abc, type); auto tuple = Slice<F>::subtupleBySlice(abc, type);
return std::make_pair(type, tuple); return std::make_pair(type, tuple);
}); });
return needed; return needed;
@ -64,8 +64,9 @@ namespace atrip {
* slices. * slices.
* *
*/ */
Slice::LocalDatabase buildLocalDatabase(ABCTuple const& abc) { typename
Slice::LocalDatabase result; Slice<F>::LocalDatabase buildLocalDatabase(ABCTuple const& abc) {
typename Slice<F>::LocalDatabase result;
auto const needed = neededSlices(abc); auto const needed = neededSlices(abc);
@ -95,7 +96,7 @@ namespace atrip {
// need // need
auto const& it auto const& it
= std::find_if(slices.begin(), slices.end(), = std::find_if(slices.begin(), slices.end(),
[&tuple, &type](Slice const& other) { [&tuple, &type](Slice<F> const& other) {
return other.info.tuple == tuple return other.info.tuple == tuple
&& other.info.type == type && other.info.type == type
// we only want another slice when it // we only want another slice when it
@ -121,7 +122,7 @@ namespace atrip {
// tuple and that has a valid data pointer. // tuple and that has a valid data pointer.
auto const& recycleIt auto const& recycleIt
= std::find_if(slices.begin(), slices.end(), = std::find_if(slices.begin(), slices.end(),
[&tuple, &type](Slice const& other) { [&tuple, &type](Slice<F> const& other) {
return other.info.tuple == tuple return other.info.tuple == tuple
&& other.info.type != type && other.info.type != type
&& other.isRecyclable() && other.isRecyclable()
@ -132,13 +133,13 @@ namespace atrip {
// (which should exist by construction :THINK) // (which should exist by construction :THINK)
// //
if (recycleIt != slices.end()) { if (recycleIt != slices.end()) {
auto& blank = Slice::findOneByType(slices, Slice::Blank); auto& blank = Slice<F>::findOneByType(slices, Slice<F>::Blank);
// TODO: formalize this through a method to copy information // TODO: formalize this through a method to copy information
// from another slice // from another slice
blank.data = recycleIt->data; blank.data = recycleIt->data;
blank.info.type = type; blank.info.type = type;
blank.info.tuple = tuple; blank.info.tuple = tuple;
blank.info.state = Slice::Recycled; blank.info.state = Slice<F>::Recycled;
blank.info.from = from; blank.info.from = from;
blank.info.recycling = recycleIt->info.type; blank.info.recycling = recycleIt->info.type;
result.push_back({name, blank.info}); result.push_back({name, blank.info});
@ -165,17 +166,17 @@ namespace atrip {
<< " for tuple " << tuple[0] << ", " << tuple[1] << " for tuple " << tuple[0] << ", " << tuple[1]
<< "\n" << "\n"
; ;
auto& blank = Slice::findOneByType(slices, Slice::Blank); auto& blank = Slice<F>::findOneByType(slices, Slice<F>::Blank);
blank.info.type = type; blank.info.type = type;
blank.info.tuple = tuple; blank.info.tuple = tuple;
blank.info.from = from; blank.info.from = from;
// Handle self sufficiency // Handle self sufficiency
blank.info.state = Atrip::rank == from.rank blank.info.state = Atrip::rank == from.rank
? Slice::SelfSufficient ? Slice<F>::SelfSufficient
: Slice::Fetch : Slice<F>::Fetch
; ;
if (blank.info.state == Slice::SelfSufficient) { if (blank.info.state == Slice<F>::SelfSufficient) {
blank.data = sources[from.source].data(); blank.data = sources[from.source].data();
} else { } else {
if (freePointers.size() == 0) if (freePointers.size() == 0)
@ -219,7 +220,7 @@ namespace atrip {
// try to find the slice in the needed slices list // try to find the slice in the needed slices list
auto const found auto const found
= std::find_if(needed.begin(), needed.end(), = std::find_if(needed.begin(), needed.end(),
[&slice] (Slice::Ty_x_Tu const& tytu) { [&slice] (typename Slice<F>::Ty_x_Tu const& tytu) {
return slice.info.tuple == tytu.second return slice.info.tuple == tytu.second
&& slice.info.type == tytu.first && slice.info.type == tytu.first
; ;
@ -238,7 +239,7 @@ namespace atrip {
// allow to gc unwrapped and recycled, never Fetch, // allow to gc unwrapped and recycled, never Fetch,
// if we have a Fetch slice then something has gone very wrong. // if we have a Fetch slice then something has gone very wrong.
if (!slice.isUnwrapped() && slice.info.state != Slice::Recycled) if (!slice.isUnwrapped() && slice.info.state != Slice<F>::Recycled)
throw throw
std::domain_error("Trying to garbage collect " std::domain_error("Trying to garbage collect "
" a non-unwrapped slice! " " a non-unwrapped slice! "
@ -259,13 +260,13 @@ namespace atrip {
// - we should make sure that the data pointer of slice // - we should make sure that the data pointer of slice
// does not get freed. // does not get freed.
// //
if (slice.info.state == Slice::Ready) { if (slice.info.state == Slice<F>::Ready) {
WITH_OCD WITH_RANK WITH_OCD WITH_RANK
<< "__gc__:" << "checking for data recycled dependencies\n"; << "__gc__:" << "checking for data recycled dependencies\n";
auto recycled auto recycled
= Slice::hasRecycledReferencingToIt(slices, slice.info); = Slice<F>::hasRecycledReferencingToIt(slices, slice.info);
if (recycled.size()) { if (recycled.size()) {
Slice* newReady = recycled[0]; Slice<F>* newReady = recycled[0];
WITH_OCD WITH_RANK WITH_OCD WITH_RANK
<< "__gc__:" << "swaping recycled " << "__gc__:" << "swaping recycled "
<< pretty_print(newReady->info) << pretty_print(newReady->info)
@ -290,8 +291,8 @@ namespace atrip {
// if the slice is self sufficient, do not dare touching the // if the slice is self sufficient, do not dare touching the
// pointer, since it is a pointer to our sources in our rank. // pointer, since it is a pointer to our sources in our rank.
if ( slice.info.state == Slice::SelfSufficient if ( slice.info.state == Slice<F>::SelfSufficient
|| slice.info.state == Slice::Recycled || slice.info.state == Slice<F>::Recycled
) { ) {
freeSlicePointer = false; freeSlicePointer = false;
} }
@ -313,7 +314,8 @@ namespace atrip {
// at this point, let us blank the slice // at this point, let us blank the slice
WITH_RANK << "~~~:cl(" << name << ")" WITH_RANK << "~~~:cl(" << name << ")"
<< " freeing up slice " << " freeing up slice "
<< " info " << slice.info // TODO: make this possible
// << " info " << slice.info
<< "\n"; << "\n";
slice.free(); slice.free();
} }
@ -323,13 +325,13 @@ namespace atrip {
// CONSTRUCTOR // CONSTRUCTOR
SliceUnion( Tensor const& sourceTensor SliceUnion( Tensor const& sourceTensor
, std::vector<Slice::Type> sliceTypes_ , std::vector<typename Slice<F>::Type> sliceTypes_
, std::vector<size_t> sliceLength_ , std::vector<size_t> sliceLength_
, std::vector<size_t> paramLength , std::vector<size_t> paramLength
, size_t np , size_t np
, MPI_Comm child_world , MPI_Comm child_world
, MPI_Comm global_world , MPI_Comm global_world
, Slice::Name name_ , typename Slice<F>::Name name_
, size_t nSliceBuffers = 4 , size_t nSliceBuffers = 4
) )
: rankMap(paramLength, np) : rankMap(paramLength, np)
@ -344,13 +346,13 @@ namespace atrip {
, name(name_) , name(name_)
, sliceTypes(sliceTypes_) , sliceTypes(sliceTypes_)
, sliceBuffers(nSliceBuffers, sources[0]) , sliceBuffers(nSliceBuffers, sources[0])
//, slices(2 * sliceTypes.size(), Slice{ sources[0].size() }) //, slices(2 * sliceTypes.size(), Slice<F>{ sources[0].size() })
{ // constructor begin { // constructor begin
LOG(0,"Atrip") << "INIT SliceUnion: " << name << "\n"; LOG(0,"Atrip") << "INIT SliceUnion: " << name << "\n";
slices slices
= std::vector<Slice>(2 * sliceTypes.size(), { sources[0].size() }); = std::vector<Slice<F>>(2 * sliceTypes.size(), { sources[0].size() });
// TODO: think exactly ^------------------- about this number // TODO: think exactly ^------------------- about this number
// initialize the freePointers with the pointers to the buffers // initialize the freePointers with the pointers to the buffers
@ -419,19 +421,19 @@ namespace atrip {
* \brief Send asynchronously only if the state is Fetch * \brief Send asynchronously only if the state is Fetch
*/ */
void send( size_t otherRank void send( size_t otherRank
, Slice::Info const& info , typename Slice<F>::Info const& info
, size_t tag) const noexcept { , size_t tag) const noexcept {
MPI_Request request; MPI_Request request;
bool sendData_p = false; bool sendData_p = false;
if (info.state == Slice::Fetch) sendData_p = true; if (info.state == Slice<F>::Fetch) sendData_p = true;
// TODO: remove this because I have SelfSufficient // TODO: remove this because I have SelfSufficient
if (otherRank == info.from.rank) sendData_p = false; if (otherRank == info.from.rank) sendData_p = false;
if (!sendData_p) return; if (!sendData_p) return;
MPI_Isend( sources[info.from.source].data() MPI_Isend( sources[info.from.source].data()
, sources[info.from.source].size() , sources[info.from.source].size()
, MPI_DOUBLE /* TODO: adapt this with traits */ , traits::mpi::datatypeOf<F>()
, otherRank , otherRank
, tag , tag
, universe , universe
@ -445,19 +447,19 @@ namespace atrip {
/** /**
* \brief Receive asynchronously only if the state is Fetch * \brief Receive asynchronously only if the state is Fetch
*/ */
void receive(Slice::Info const& info, size_t tag) noexcept { void receive(typename Slice<F>::Info const& info, size_t tag) noexcept {
auto& slice = Slice::findByInfo(slices, info); auto& slice = Slice<F>::findByInfo(slices, info);
if (Atrip::rank == info.from.rank) return; if (Atrip::rank == info.from.rank) return;
if (slice.info.state == Slice::Fetch) { if (slice.info.state == Slice<F>::Fetch) {
// TODO: do it through the slice class // TODO: do it through the slice class
slice.info.state = Slice::Dispatched; slice.info.state = Slice<F>::Dispatched;
MPI_Request request; MPI_Request request;
slice.request = request; slice.request = request;
MPI_Irecv( slice.data MPI_Irecv( slice.data
, slice.size , slice.size
, MPI_DOUBLE // TODO: Adapt this with traits , traits::mpi::datatypeOf<F>()
, info.from.rank , info.from.rank
, tag , tag
, universe , universe
@ -471,42 +473,42 @@ namespace atrip {
for (auto type: sliceTypes) unwrapSlice(type, abc); for (auto type: sliceTypes) unwrapSlice(type, abc);
} }
F* unwrapSlice(Slice::Type type, ABCTuple const& abc) { F* unwrapSlice(typename Slice<F>::Type type, ABCTuple const& abc) {
WITH_CRAZY_DEBUG WITH_CRAZY_DEBUG
WITH_RANK << "__unwrap__:slice " << type << " w n " WITH_RANK << "__unwrap__:slice " << type << " w n "
<< name << name
<< " abc" << pretty_print(abc) << " abc" << pretty_print(abc)
<< "\n"; << "\n";
auto& slice = Slice::findByTypeAbc(slices, type, abc); auto& slice = Slice<F>::findByTypeAbc(slices, type, abc);
WITH_RANK << "__unwrap__:info " << slice.info << "\n"; //WITH_RANK << "__unwrap__:info " << slice.info << "\n";
switch (slice.info.state) { switch (slice.info.state) {
case Slice::Dispatched: case Slice<F>::Dispatched:
WITH_RANK << "__unwrap__:Fetch: " << &slice WITH_RANK << "__unwrap__:Fetch: " << &slice
<< " info " << pretty_print(slice.info) << " info " << pretty_print(slice.info)
<< "\n"; << "\n";
slice.unwrapAndMarkReady(); slice.unwrapAndMarkReady();
return slice.data; return slice.data;
break; break;
case Slice::SelfSufficient: case Slice<F>::SelfSufficient:
WITH_RANK << "__unwrap__:SelfSufficient: " << &slice WITH_RANK << "__unwrap__:SelfSufficient: " << &slice
<< " info " << pretty_print(slice.info) << " info " << pretty_print(slice.info)
<< "\n"; << "\n";
return slice.data; return slice.data;
break; break;
case Slice::Ready: case Slice<F>::Ready:
WITH_RANK << "__unwrap__:READY: UNWRAPPED ALREADY" << &slice WITH_RANK << "__unwrap__:READY: UNWRAPPED ALREADY" << &slice
<< " info " << pretty_print(slice.info) << " info " << pretty_print(slice.info)
<< "\n"; << "\n";
return slice.data; return slice.data;
break; break;
case Slice::Recycled: case Slice<F>::Recycled:
WITH_RANK << "__unwrap__:RECYCLED " << &slice WITH_RANK << "__unwrap__:RECYCLED " << &slice
<< " info " << pretty_print(slice.info) << " info " << pretty_print(slice.info)
<< "\n"; << "\n";
return unwrapSlice(slice.info.recycling, abc); return unwrapSlice(slice.info.recycling, abc);
break; break;
case Slice::Fetch: case Slice<F>::Fetch:
case Slice::Acceptor: case Slice<F>::Acceptor:
throw std::domain_error("Can't unwrap an acceptor or fetch slice!"); throw std::domain_error("Can't unwrap an acceptor or fetch slice!");
break; break;
default: default:
@ -515,24 +517,26 @@ namespace atrip {
return slice.data; return slice.data;
} }
const RankMap rankMap; const RankMap<F> rankMap;
const MPI_Comm world; const MPI_Comm world;
const MPI_Comm universe; const MPI_Comm universe;
const std::vector<size_t> sliceLength; const std::vector<size_t> sliceLength;
std::vector< std::vector<F> > sources; std::vector< std::vector<F> > sources;
std::vector< Slice > slices; std::vector< Slice<F> > slices;
Slice::Name name; typename Slice<F>::Name name;
const std::vector<Slice::Type> sliceTypes; const std::vector<typename Slice<F>::Type> sliceTypes;
std::vector< std::vector<F> > sliceBuffers; std::vector< std::vector<F> > sliceBuffers;
std::set<F*> freePointers; std::set<F*> freePointers;
}; };
SliceUnion& template <typename F=double>
unionByName(std::vector<SliceUnion*> const& unions, Slice::Name name) { SliceUnion<F>&
unionByName(std::vector<SliceUnion<F>*> const& unions,
typename Slice<F>::Name name) {
const auto sliceUnionIt const auto sliceUnionIt
= std::find_if(unions.begin(), unions.end(), = std::find_if(unions.begin(), unions.end(),
[&name](SliceUnion const* s) { [&name](SliceUnion<F> const* s) {
return name == s->name; return name == s->name;
}); });
if (sliceUnionIt == unions.end()) if (sliceUnionIt == unions.end())

View File

@ -1,4 +1,4 @@
// [[file:../../atrip.org::*Tuples][Tuples:1]] // [[file:~/cc4s/src/atrip/complex/atrip.org::*Tuples][Tuples:1]]
#pragma once #pragma once
#include <vector> #include <vector>

View File

@ -1,15 +1,16 @@
// [[file:../../atrip.org::*Unions][Unions:1]] // [[file:~/cc4s/src/atrip/complex/atrip.org::*Unions][Unions:1]]
#pragma once #pragma once
#include <atrip/SliceUnion.hpp> #include <atrip/SliceUnion.hpp>
namespace atrip { namespace atrip {
template <typename F=double>
void sliceIntoVector void sliceIntoVector
( std::vector<double> &v ( std::vector<F> &v
, CTF::Tensor<double> &toSlice , CTF::Tensor<F> &toSlice
, std::vector<int64_t> const low , std::vector<int64_t> const low
, std::vector<int64_t> const up , std::vector<int64_t> const up
, CTF::Tensor<double> const& origin , CTF::Tensor<F> const& origin
, std::vector<int64_t> const originLow , std::vector<int64_t> const originLow
, std::vector<int64_t> const originUp , std::vector<int64_t> const originUp
) { ) {
@ -36,40 +37,41 @@ namespace atrip {
, origin_.low.data() , origin_.low.data()
, origin_.up.data() , origin_.up.data()
, 1.0); , 1.0);
memcpy(v.data(), toSlice.data, sizeof(double) * v.size()); memcpy(v.data(), toSlice.data, sizeof(F) * v.size());
#endif #endif
} }
struct TAPHH : public SliceUnion { template <typename F=double>
TAPHH( Tensor const& sourceTensor struct TAPHH : public SliceUnion<F> {
TAPHH( CTF::Tensor<F> const& sourceTensor
, size_t No , size_t No
, size_t Nv , size_t Nv
, size_t np , size_t np
, MPI_Comm child_world , MPI_Comm child_world
, MPI_Comm global_world , MPI_Comm global_world
) : SliceUnion( sourceTensor ) : SliceUnion<F>( sourceTensor
, {Slice::A, Slice::B, Slice::C} , {Slice<F>::A, Slice<F>::B, Slice<F>::C}
, {Nv, No, No} // size of the slices , {Nv, No, No} // size of the slices
, {Nv} , {Nv}
, np , np
, child_world , child_world
, global_world , global_world
, Slice::TA , Slice<F>::TA
, 4) { , 4) {
init(sourceTensor); init(sourceTensor);
} }
void sliceIntoBuffer(size_t it, Tensor &to, Tensor const& from) override void sliceIntoBuffer(size_t it, CTF::Tensor<F> &to, CTF::Tensor<F> const& from) override
{ {
const int Nv = sliceLength[0] const int Nv = this->sliceLength[0]
, No = sliceLength[1] , No = this->sliceLength[1]
, a = rankMap.find({static_cast<size_t>(Atrip::rank), it}); , a = this->rankMap.find({static_cast<size_t>(Atrip::rank), it});
; ;
sliceIntoVector( sources[it] sliceIntoVector<F>( this->sources[it]
, to, {0, 0, 0}, {Nv, No, No} , to, {0, 0, 0}, {Nv, No, No}
, from, {a, 0, 0, 0}, {a+1, Nv, No, No} , from, {a, 0, 0, 0}, {a+1, Nv, No, No}
); );
@ -79,33 +81,34 @@ namespace atrip {
}; };
struct HHHA : public SliceUnion { template <typename F=double>
HHHA( Tensor const& sourceTensor struct HHHA : public SliceUnion<F> {
HHHA( CTF::Tensor<F> const& sourceTensor
, size_t No , size_t No
, size_t Nv , size_t Nv
, size_t np , size_t np
, MPI_Comm child_world , MPI_Comm child_world
, MPI_Comm global_world , MPI_Comm global_world
) : SliceUnion( sourceTensor ) : SliceUnion<F>( sourceTensor
, {Slice::A, Slice::B, Slice::C} , {Slice<F>::A, Slice<F>::B, Slice<F>::C}
, {No, No, No} // size of the slices , {No, No, No} // size of the slices
, {Nv} // size of the parametrization , {Nv} // size of the parametrization
, np , np
, child_world , child_world
, global_world , global_world
, Slice::VIJKA , Slice<F>::VIJKA
, 4) { , 4) {
init(sourceTensor); init(sourceTensor);
} }
void sliceIntoBuffer(size_t it, Tensor &to, Tensor const& from) override void sliceIntoBuffer(size_t it, CTF::Tensor<F> &to, CTF::Tensor<F> const& from) override
{ {
const int No = sliceLength[0] const int No = this->sliceLength[0]
, a = rankMap.find({static_cast<size_t>(Atrip::rank), it}) , a = this->rankMap.find({static_cast<size_t>(Atrip::rank), it})
; ;
sliceIntoVector( sources[it] sliceIntoVector<F>( this->sources[it]
, to, {0, 0, 0}, {No, No, No} , to, {0, 0, 0}, {No, No, No}
, from, {0, 0, 0, a}, {No, No, No, a+1} , from, {0, 0, 0, a}, {No, No, No, a+1}
); );
@ -113,38 +116,39 @@ namespace atrip {
} }
}; };
struct ABPH : public SliceUnion { template <typename F=double>
ABPH( Tensor const& sourceTensor struct ABPH : public SliceUnion<F> {
ABPH( CTF::Tensor<F> const& sourceTensor
, size_t No , size_t No
, size_t Nv , size_t Nv
, size_t np , size_t np
, MPI_Comm child_world , MPI_Comm child_world
, MPI_Comm global_world , MPI_Comm global_world
) : SliceUnion( sourceTensor ) : SliceUnion<F>( sourceTensor
, { Slice::AB, Slice::BC, Slice::AC , { Slice<F>::AB, Slice<F>::BC, Slice<F>::AC
, Slice::BA, Slice::CB, Slice::CA , Slice<F>::BA, Slice<F>::CB, Slice<F>::CA
} }
, {Nv, No} // size of the slices , {Nv, No} // size of the slices
, {Nv, Nv} // size of the parametrization , {Nv, Nv} // size of the parametrization
, np , np
, child_world , child_world
, global_world , global_world
, Slice::VABCI , Slice<F>::VABCI
, 2*6) { , 2*6) {
init(sourceTensor); init(sourceTensor);
} }
void sliceIntoBuffer(size_t it, Tensor &to, Tensor const& from) override { void sliceIntoBuffer(size_t it, CTF::Tensor<F> &to, CTF::Tensor<F> const& from) override {
const int Nv = sliceLength[0] const int Nv = this->sliceLength[0]
, No = sliceLength[1] , No = this->sliceLength[1]
, el = rankMap.find({static_cast<size_t>(Atrip::rank), it}) , el = this->rankMap.find({static_cast<size_t>(Atrip::rank), it})
, a = el % Nv , a = el % Nv
, b = el / Nv , b = el / Nv
; ;
sliceIntoVector( sources[it] sliceIntoVector<F>( this->sources[it]
, to, {0, 0}, {Nv, No} , to, {0, 0}, {Nv, No}
, from, {a, b, 0, 0}, {a+1, b+1, Nv, No} , from, {a, b, 0, 0}, {a+1, b+1, Nv, No}
); );
@ -153,35 +157,36 @@ namespace atrip {
}; };
struct ABHH : public SliceUnion { template <typename F=double>
ABHH( Tensor const& sourceTensor struct ABHH : public SliceUnion<F> {
ABHH( CTF::Tensor<F> const& sourceTensor
, size_t No , size_t No
, size_t Nv , size_t Nv
, size_t np , size_t np
, MPI_Comm child_world , MPI_Comm child_world
, MPI_Comm global_world , MPI_Comm global_world
) : SliceUnion( sourceTensor ) : SliceUnion<F>( sourceTensor
, {Slice::AB, Slice::BC, Slice::AC} , {Slice<F>::AB, Slice<F>::BC, Slice<F>::AC}
, {No, No} // size of the slices , {No, No} // size of the slices
, {Nv, Nv} // size of the parametrization , {Nv, Nv} // size of the parametrization
, np , np
, child_world , child_world
, global_world , global_world
, Slice::VABIJ , Slice<F>::VABIJ
, 6) { , 6) {
init(sourceTensor); init(sourceTensor);
} }
void sliceIntoBuffer(size_t it, Tensor &to, Tensor const& from) override { void sliceIntoBuffer(size_t it, CTF::Tensor<F> &to, CTF::Tensor<F> const& from) override {
const int Nv = from.lens[0] const int Nv = from.lens[0]
, No = sliceLength[1] , No = this->sliceLength[1]
, el = rankMap.find({static_cast<size_t>(Atrip::rank), it}) , el = this->rankMap.find({static_cast<size_t>(Atrip::rank), it})
, a = el % Nv , a = el % Nv
, b = el / Nv , b = el / Nv
; ;
sliceIntoVector( sources[it] sliceIntoVector<F>( this->sources[it]
, to, {0, 0}, {No, No} , to, {0, 0}, {No, No}
, from, {a, b, 0, 0}, {a+1, b+1, No, No} , from, {a, b, 0, 0}, {a+1, b+1, No, No}
); );
@ -192,36 +197,37 @@ namespace atrip {
}; };
struct TABHH : public SliceUnion { template <typename F=double>
TABHH( Tensor const& sourceTensor struct TABHH : public SliceUnion<F> {
TABHH( CTF::Tensor<F> const& sourceTensor
, size_t No , size_t No
, size_t Nv , size_t Nv
, size_t np , size_t np
, MPI_Comm child_world , MPI_Comm child_world
, MPI_Comm global_world , MPI_Comm global_world
) : SliceUnion( sourceTensor ) : SliceUnion<F>( sourceTensor
, {Slice::AB, Slice::BC, Slice::AC} , {Slice<F>::AB, Slice<F>::BC, Slice<F>::AC}
, {No, No} // size of the slices , {No, No} // size of the slices
, {Nv, Nv} // size of the parametrization , {Nv, Nv} // size of the parametrization
, np , np
, child_world , child_world
, global_world , global_world
, Slice::TABIJ , Slice<F>::TABIJ
, 6) { , 6) {
init(sourceTensor); init(sourceTensor);
} }
void sliceIntoBuffer(size_t it, Tensor &to, Tensor const& from) override { void sliceIntoBuffer(size_t it, CTF::Tensor<F> &to, CTF::Tensor<F> const& from) override {
// TODO: maybe generalize this with ABHH // TODO: maybe generalize this with ABHH
const int Nv = from.lens[0] const int Nv = from.lens[0]
, No = sliceLength[1] , No = this->sliceLength[1]
, el = rankMap.find({static_cast<size_t>(Atrip::rank), it}) , el = this->rankMap.find({static_cast<size_t>(Atrip::rank), it})
, a = el % Nv , a = el % Nv
, b = el / Nv , b = el / Nv
; ;
sliceIntoVector( sources[it] sliceIntoVector<F>( this->sources[it]
, to, {0, 0}, {No, No} , to, {0, 0}, {No, No}
, from, {a, b, 0, 0}, {a+1, b+1, No, No} , from, {a, b, 0, 0}, {a+1, b+1, No, No}
); );

View File

@ -1,4 +1,4 @@
// [[file:../../atrip.org::*Utils][Utils:1]] // [[file:~/cc4s/src/atrip/complex/atrip.org::*Utils][Utils:1]]
#pragma once #pragma once
#include <sstream> #include <sstream>
#include <string> #include <string>

View File

@ -1,4 +1,4 @@
// [[file:../../atrip.org::*Main][Main:1]] // [[file:~/cc4s/src/atrip/complex/atrip.org::*Main][Main:1]]
#include <iomanip> #include <iomanip>
#include <atrip/Atrip.hpp> #include <atrip/Atrip.hpp>
@ -23,7 +23,8 @@ void Atrip::init() {
MPI_Comm_size(MPI_COMM_WORLD, &Atrip::np); MPI_Comm_size(MPI_COMM_WORLD, &Atrip::np);
} }
Atrip::Output Atrip::run(Atrip::Input const& in) { template <typename F>
Atrip::Output Atrip::run(Atrip::Input<F> const& in) {
const int np = Atrip::np; const int np = Atrip::np;
const int rank = Atrip::rank; const int rank = Atrip::rank;
@ -38,7 +39,7 @@ Atrip::Output Atrip::run(Atrip::Input const& in) {
LOG(0,"Atrip") << "Nv: " << Nv << "\n"; LOG(0,"Atrip") << "Nv: " << Nv << "\n";
// allocate the three scratches, see piecuch // allocate the three scratches, see piecuch
std::vector<double> Tijk(No*No*No) // doubles only (see piecuch) std::vector<F> Tijk(No*No*No) // doubles only (see piecuch)
, Zijk(No*No*No) // singles + doubles (see piecuch) , Zijk(No*No*No) // singles + doubles (see piecuch)
// we need local copies of the following tensors on every // we need local copies of the following tensors on every
// rank // rank
@ -74,20 +75,20 @@ Atrip::Output Atrip::run(Atrip::Input const& in) {
chrono["nv-slices"].start(); chrono["nv-slices"].start();
// BUILD SLICES PARAMETRIZED BY NV ==================================={{{1 // BUILD SLICES PARAMETRIZED BY NV ==================================={{{1
LOG(0,"Atrip") << "BUILD NV-SLICES\n"; LOG(0,"Atrip") << "BUILD NV-SLICES\n";
TAPHH taphh(*in.Tpphh, (size_t)No, (size_t)Nv, (size_t)np, child_comm, universe); TAPHH<F> taphh(*in.Tpphh, (size_t)No, (size_t)Nv, (size_t)np, child_comm, universe);
HHHA hhha(*in.Vhhhp, (size_t)No, (size_t)Nv, (size_t)np, child_comm, universe); HHHA<F> hhha(*in.Vhhhp, (size_t)No, (size_t)Nv, (size_t)np, child_comm, universe);
chrono["nv-slices"].stop(); chrono["nv-slices"].stop();
chrono["nv-nv-slices"].start(); chrono["nv-nv-slices"].start();
// BUILD SLICES PARAMETRIZED BY NV x NV =============================={{{1 // BUILD SLICES PARAMETRIZED BY NV x NV =============================={{{1
LOG(0,"Atrip") << "BUILD NV x NV-SLICES\n"; LOG(0,"Atrip") << "BUILD NV x NV-SLICES\n";
ABPH abph(*in.Vppph, (size_t)No, (size_t)Nv, (size_t)np, child_comm, universe); ABPH<F> abph(*in.Vppph, (size_t)No, (size_t)Nv, (size_t)np, child_comm, universe);
ABHH abhh(*in.Vpphh, (size_t)No, (size_t)Nv, (size_t)np, child_comm, universe); ABHH<F> abhh(*in.Vpphh, (size_t)No, (size_t)Nv, (size_t)np, child_comm, universe);
TABHH tabhh(*in.Tpphh, (size_t)No, (size_t)Nv, (size_t)np, child_comm, universe); TABHH<F> tabhh(*in.Tpphh, (size_t)No, (size_t)Nv, (size_t)np, child_comm, universe);
chrono["nv-nv-slices"].stop(); chrono["nv-nv-slices"].stop();
// all tensors // all tensors
std::vector< SliceUnion* > unions = {&taphh, &hhha, &abph, &abhh, &tabhh}; std::vector< SliceUnion<F>* > unions = {&taphh, &hhha, &abph, &abhh, &tabhh};
//CONSTRUCT TUPLE LIST ==============================================={{{1 //CONSTRUCT TUPLE LIST ==============================================={{{1
LOG(0,"Atrip") << "BUILD TUPLE LIST\n"; LOG(0,"Atrip") << "BUILD TUPLE LIST\n";
@ -121,18 +122,20 @@ Atrip::Output Atrip::run(Atrip::Input const& in) {
= [&tuplesList](size_t const i) { return i >= tuplesList.size(); }; = [&tuplesList](size_t const i) { return i >= tuplesList.size(); };
using Database = typename Slice<F>::Database;
using LocalDatabase = typename Slice<F>::LocalDatabase;
auto communicateDatabase auto communicateDatabase
= [ &unions = [ &unions
, np , np
, &chrono , &chrono
] (ABCTuple const& abc, MPI_Comm const& c) -> Slice::Database { ] (ABCTuple const& abc, MPI_Comm const& c) -> Database {
chrono["db:comm:type:do"].start(); chrono["db:comm:type:do"].start();
auto MPI_LDB_ELEMENT = Slice::mpi::localDatabaseElement(); auto MPI_LDB_ELEMENT = Slice<F>::mpi::localDatabaseElement();
chrono["db:comm:type:do"].stop(); chrono["db:comm:type:do"].stop();
chrono["db:comm:ldb"].start(); chrono["db:comm:ldb"].start();
Slice::LocalDatabase ldb; LocalDatabase ldb;
for (auto const& tensor: unions) { for (auto const& tensor: unions) {
auto const& tensorDb = tensor->buildLocalDatabase(abc); auto const& tensorDb = tensor->buildLocalDatabase(abc);
@ -140,7 +143,7 @@ Atrip::Output Atrip::run(Atrip::Input const& in) {
} }
chrono["db:comm:ldb"].stop(); chrono["db:comm:ldb"].stop();
Slice::Database db(np * ldb.size(), ldb[0]); Database db(np * ldb.size(), ldb[0]);
chrono["oneshot-db:comm:allgather"].start(); chrono["oneshot-db:comm:allgather"].start();
chrono["db:comm:allgather"].start(); chrono["db:comm:allgather"].start();
@ -162,7 +165,7 @@ Atrip::Output Atrip::run(Atrip::Input const& in) {
}; };
auto doIOPhase auto doIOPhase
= [&unions, &rank, &np, &universe, &chrono] (Slice::Database const& db) { = [&unions, &rank, &np, &universe, &chrono] (Database const& db) {
const size_t localDBLength = db.size() / np; const size_t localDBLength = db.size() / np;
@ -212,7 +215,7 @@ Atrip::Output Atrip::run(Atrip::Input const& in) {
; ;
for (auto it = begin; it != end; ++it) { for (auto it = begin; it != end; ++it) {
sendTag++; sendTag++;
Slice::LocalDatabaseElement const& el = *it; typename Slice<F>::LocalDatabaseElement const& el = *it;
if (el.info.from.rank != rank) continue; if (el.info.from.rank != rank) continue;
@ -261,14 +264,13 @@ Atrip::Output Atrip::run(Atrip::Input const& in) {
// START MAIN LOOP ======================================================{{{1 // START MAIN LOOP ======================================================{{{1
Slice::Database db;
for ( size_t i = abcIndex.first, iteration = 1 for ( size_t i = abcIndex.first, iteration = 1
; i < abcIndex.second ; i < abcIndex.second
; i++, iteration++ ; i++, iteration++
) { ) {
chrono["iterations"].start(); chrono["iterations"].start();
// check overhead from chrono over all iterations // check overhead from chrono over all iterations
chrono["start:stop"].start(); chrono["start:stop"].stop(); chrono["start:stop"].start(); chrono["start:stop"].stop();
@ -347,7 +349,7 @@ Atrip::Output Atrip::run(Atrip::Input const& in) {
WITH_RANK << "__comm__:" << iteration << "th communicating database\n"; WITH_RANK << "__comm__:" << iteration << "th communicating database\n";
chrono["db:comm"].start(); chrono["db:comm"].start();
//const auto db = communicateDatabase(*abcNext, universe); //const auto db = communicateDatabase(*abcNext, universe);
db = communicateDatabase(*abcNext, universe); Database db = communicateDatabase(*abcNext, universe);
chrono["db:comm"].stop(); chrono["db:comm"].stop();
chrono["db:io"].start(); chrono["db:io"].start();
doIOPhase(db); doIOPhase(db);
@ -368,26 +370,26 @@ Atrip::Output Atrip::run(Atrip::Input const& in) {
))) )))
chrono["oneshot-doubles"].start(); chrono["oneshot-doubles"].start();
chrono["doubles"].start(); chrono["doubles"].start();
doublesContribution( abc, (size_t)No, (size_t)Nv doublesContribution<F>( abc, (size_t)No, (size_t)Nv
// -- VABCI // -- VABCI
, abph.unwrapSlice(Slice::AB, abc) , abph.unwrapSlice(Slice<F>::AB, abc)
, abph.unwrapSlice(Slice::AC, abc) , abph.unwrapSlice(Slice<F>::AC, abc)
, abph.unwrapSlice(Slice::BC, abc) , abph.unwrapSlice(Slice<F>::BC, abc)
, abph.unwrapSlice(Slice::BA, abc) , abph.unwrapSlice(Slice<F>::BA, abc)
, abph.unwrapSlice(Slice::CA, abc) , abph.unwrapSlice(Slice<F>::CA, abc)
, abph.unwrapSlice(Slice::CB, abc) , abph.unwrapSlice(Slice<F>::CB, abc)
// -- VHHHA // -- VHHHA
, hhha.unwrapSlice(Slice::A, abc) , hhha.unwrapSlice(Slice<F>::A, abc)
, hhha.unwrapSlice(Slice::B, abc) , hhha.unwrapSlice(Slice<F>::B, abc)
, hhha.unwrapSlice(Slice::C, abc) , hhha.unwrapSlice(Slice<F>::C, abc)
// -- TA // -- TA
, taphh.unwrapSlice(Slice::A, abc) , taphh.unwrapSlice(Slice<F>::A, abc)
, taphh.unwrapSlice(Slice::B, abc) , taphh.unwrapSlice(Slice<F>::B, abc)
, taphh.unwrapSlice(Slice::C, abc) , taphh.unwrapSlice(Slice<F>::C, abc)
// -- TABIJ // -- TABIJ
, tabhh.unwrapSlice(Slice::AB, abc) , tabhh.unwrapSlice(Slice<F>::AB, abc)
, tabhh.unwrapSlice(Slice::AC, abc) , tabhh.unwrapSlice(Slice<F>::AC, abc)
, tabhh.unwrapSlice(Slice::BC, abc) , tabhh.unwrapSlice(Slice<F>::BC, abc)
// -- TIJK // -- TIJK
, Tijk.data() , Tijk.data()
, chrono , chrono
@ -409,11 +411,11 @@ Atrip::Output Atrip::run(Atrip::Input const& in) {
for (size_t I(0); I < Zijk.size(); I++) Zijk[I] = Tijk[I]; for (size_t I(0); I < Zijk.size(); I++) Zijk[I] = Tijk[I];
chrono["reorder"].stop(); chrono["reorder"].stop();
chrono["singles"].start(); chrono["singles"].start();
singlesContribution( No, Nv, abc singlesContribution<F>( No, Nv, abc
, Tai.data() , Tai.data()
, abhh.unwrapSlice(Slice::AB, abc) , abhh.unwrapSlice(Slice<F>::AB, abc)
, abhh.unwrapSlice(Slice::AC, abc) , abhh.unwrapSlice(Slice<F>::AC, abc)
, abhh.unwrapSlice(Slice::BC, abc) , abhh.unwrapSlice(Slice<F>::BC, abc)
, Zijk.data()); , Zijk.data());
chrono["singles"].stop(); chrono["singles"].stop();
} }
@ -426,13 +428,13 @@ Atrip::Output Atrip::run(Atrip::Input const& in) {
int distinct(0); int distinct(0);
if (abc[0] == abc[1]) distinct++; if (abc[0] == abc[1]) distinct++;
if (abc[1] == abc[2]) distinct--; if (abc[1] == abc[2]) distinct--;
const double epsabc(epsa[abc[0]] + epsa[abc[1]] + epsa[abc[2]]); const F epsabc(epsa[abc[0]] + epsa[abc[1]] + epsa[abc[2]]);
chrono["energy"].start(); chrono["energy"].start();
if ( distinct == 0) if ( distinct == 0)
tupleEnergy = getEnergyDistinct(epsabc, epsi, Tijk, Zijk); tupleEnergy = getEnergyDistinct<F>(epsabc, epsi, Tijk, Zijk);
else else
tupleEnergy = getEnergySame(epsabc, epsi, Tijk, Zijk); tupleEnergy = getEnergySame<F>(epsabc, epsi, Tijk, Zijk);
chrono["energy"].stop(); chrono["energy"].stop();
#if defined(HAVE_OCD) || defined(ATRIP_PRINT_TUPLES) #if defined(HAVE_OCD) || defined(ATRIP_PRINT_TUPLES)
@ -473,8 +475,8 @@ Atrip::Output Atrip::run(Atrip::Input const& in) {
<< " :abc " << pretty_print(abc) << " :abc " << pretty_print(abc)
<< " :abcN " << pretty_print(*abcNext) << " :abcN " << pretty_print(*abcNext)
<< "\n"; << "\n";
for (auto const& slice: u->slices) // for (auto const& slice: u->slices)
WITH_RANK << "__gc__:guts:" << slice.info << "\n"; // WITH_RANK << "__gc__:guts:" << slice.info << "\n";
u->clearUnusedSlicesForNext(*abcNext); u->clearUnusedSlicesForNext(*abcNext);
WITH_RANK << "__gc__: checking validity\n"; WITH_RANK << "__gc__: checking validity\n";
@ -482,13 +484,13 @@ Atrip::Output Atrip::run(Atrip::Input const& in) {
#ifdef HAVE_OCD #ifdef HAVE_OCD
// check for validity of the slices // check for validity of the slices
for (auto type: u->sliceTypes) { for (auto type: u->sliceTypes) {
auto tuple = Slice::subtupleBySlice(abc, type); auto tuple = Slice<F>::subtupleBySlice(abc, type);
for (auto& slice: u->slices) { for (auto& slice: u->slices) {
if ( slice.info.type == type if ( slice.info.type == type
&& slice.info.tuple == tuple && slice.info.tuple == tuple
&& slice.isDirectlyFetchable() && slice.isDirectlyFetchable()
) { ) {
if (slice.info.state == Slice::Dispatched) if (slice.info.state == Slice<F>::Dispatched)
throw std::domain_error( "This slice should not be undispatched! " throw std::domain_error( "This slice should not be undispatched! "
+ pretty_print(slice.info)); + pretty_print(slice.info));
} }
@ -555,4 +557,7 @@ Atrip::Output Atrip::run(Atrip::Input const& in) {
return { - globalEnergy }; return { - globalEnergy };
} }
// instantiate
template Atrip::Output Atrip::run(Atrip::Input<double> const& in);
template Atrip::Output Atrip::run(Atrip::Input<Complex> const& in);
// Main:1 ends here // Main:1 ends here