Compare commits

..

5 Commits

11 changed files with 1168 additions and 437 deletions

20
.dir-locals.el Normal file
View File

@ -0,0 +1,20 @@
;;; Directory Local Variables
;;; For more information see (info "(emacs) Directory Variables")
((c++-mode . ((outline-regexp . "// \\[\\[file:")
(eval . (let
((root
(expand-file-name
(project-root
(project-current)))))
(setq-local flycheck-gcc-include-path
(list
(format "%s/vendor/include/" root)
(format "%s/include/" root)
(format "%s/" root)
(format "%s/bench/" root)
(format "%s/build/main/" root)))))
(eval . (flycheck-mode))
(eval . (outline-minor-mode))
(indent-tabs-mode . nil)
(tab-width . 2))))

3
.gitignore vendored
View File

@ -25,3 +25,6 @@ config.mk
/atrip.html
/TAGS
/config.h.in
/result
/result-dev
/vendor/

View File

@ -0,0 +1,443 @@
#include <iostream>
#define ATRIP_DEBUG 2
#include <atrip/Atrip.hpp>
#include <atrip/Tuples.hpp>
#include <atrip/Unions.hpp>
#include <bench/CLI11.hpp>
#include <bench/utils.hpp>
using namespace atrip;
using F = double;
using Tr = CTF::Tensor<F>;
#define INIT_DRY(name, ...) \
do { \
std::vector<int64_t> lens = __VA_ARGS__; \
int i = -1; \
name.order = lens.size(); \
name.lens = (int64_t*)malloc(sizeof(int64_t) * lens.size()); \
name.sym = (int*)malloc(sizeof(int) * lens.size()); \
name.lens[++i] = lens[i]; name.lens[++i] = lens[i]; \
name.lens[++i] = lens[i]; name.lens[++i] = lens[i]; \
i = 0; \
name.sym[i++] = NS; name.sym[i++] = NS; \
name.sym[i++] = NS; name.sym[i++] = NS; \
} while (0)
#define DEINIT_DRY(name) \
do { \
name.order = 0; \
name.lens = NULL; \
name.sym = NULL; \
} while (0)
using LocalDatabase = typename Slice<F>::LocalDatabase;
using LocalDatabaseElement = typename Slice<F>::LocalDatabaseElement;
LocalDatabase buildLocalDatabase(SliceUnion<F> &u,
ABCTuple const& abc) {
LocalDatabase result;
auto const needed = u.neededSlices(abc);
// BUILD THE DATABASE
// we need to loop over all sliceTypes that this TensorUnion
// is representing and find out how we will get the corresponding
// slice for the abc we are considering right now.
for (auto const& pair: needed) {
auto const type = pair.first;
auto const tuple = pair.second;
auto const from = u.rankMap.find(abc, type);
{
// FIRST: look up if there is already a *Ready* slice matching what we
// need
auto const& it
= std::find_if(u.slices.begin(), u.slices.end(),
[&tuple, &type](Slice<F> const& other) {
return other.info.tuple == tuple
&& other.info.type == type
// we only want another slice when it
// has already ready-to-use data
&& other.isUnwrappable()
;
});
if (it != u.slices.end()) {
// if we find this slice, it means that we don't have to do anything
result.push_back({u.name, it->info});
continue;
}
}
//
// Try to find a recyling possibility ie. find a slice with the same
// tuple and that has a valid data pointer.
//
auto const& recycleIt
= std::find_if(u.slices.begin(), u.slices.end(),
[&tuple, &type](Slice<F> const& other) {
return other.info.tuple == tuple
&& other.info.type != type
&& other.isRecyclable()
;
});
//
// if we find this recylce, then we find a Blank slice
// (which should exist by construction :THINK)
//
if (recycleIt != u.slices.end()) {
auto& blank = Slice<F>::findOneByType(u.slices, Slice<F>::Blank);
// TODO: formalize this through a method to copy information
// from another slice
blank.data = recycleIt->data;
blank.info.type = type;
blank.info.tuple = tuple;
blank.info.state = Slice<F>::Recycled;
blank.info.from = from;
blank.info.recycling = recycleIt->info.type;
result.push_back({u.name, blank.info});
WITH_RANK << "__db__: RECYCLING: n" << u.name
<< " " << pretty_print(abc)
<< " get " << pretty_print(blank.info)
<< " from " << pretty_print(recycleIt->info)
<< " ptr " << recycleIt->data
<< "\n"
;
continue;
}
// in this case we have to create a new slice
// this means that we should have a blank slice at our disposal
// and also the freePointers should have some elements inside,
// so we pop a data pointer from the freePointers container
{
auto& blank = Slice<F>::findOneByType(u.slices, Slice<F>::Blank);
blank.info.type = type;
blank.info.tuple = tuple;
blank.info.from = from;
// Handle self sufficiency
blank.info.state = Atrip::rank == from.rank
? Slice<F>::SelfSufficient
: Slice<F>::Fetch
;
if (blank.info.state == Slice<F>::SelfSufficient) {
blank.data = (F*)0xBADA55;
} else {
blank.data = (F*)0xA55A55;
}
result.push_back({u.name, blank.info});
continue;
}
}
return result;
}
void clearUnusedSlicesForNext(SliceUnion<F> &u,
ABCTuple const& abc) {
auto const needed = u.neededSlices(abc);
// CLEAN UP SLICES, FREE THE ONES THAT ARE NOT NEEDED ANYMORE
for (auto& slice: u.slices) {
// if the slice is free, then it was not used anyways
if (slice.isFree()) continue;
// try to find the slice in the needed slices list
auto const found
= std::find_if(needed.begin(), needed.end(),
[&slice] (typename Slice<F>::Ty_x_Tu const& tytu) {
return slice.info.tuple == tytu.second
&& slice.info.type == tytu.first
;
});
// if we did not find slice in needed, then erase it
if (found == needed.end()) {
// allow to gc unwrapped and recycled, never Fetch,
// if we have a Fetch slice then something has gone very wrong.
if (!slice.isUnwrapped() && slice.info.state != Slice<F>::Recycled)
throw
std::domain_error(_FORMAT("Trying to garbage collect (%d, %d) "
" a non-unwrapped slice! ",
slice.info.type,
slice.info.state));
// it can be that our slice is ready, but it has some hanging
// references lying around in the form of a recycled slice.
// Of course if we need the recycled slice the next iteration
// this would be fatal, because we would then free the pointer
// of the slice and at some point in the future we would
// overwrite it. Therefore, we must check if slice has some
// references in slices and if so then
//
// - we should mark those references as the original (since the data
// pointer should be the same)
//
// - we should make sure that the data pointer of slice
// does not get freed.
//
if (slice.info.state == Slice<F>::Ready) {
WITH_OCD WITH_RANK
<< "__gc__:" << "checking for data recycled dependencies\n";
auto recycled
= Slice<F>::hasRecycledReferencingToIt(u.slices, slice.info);
if (recycled.size()) {
Slice<F>* newReady = recycled[0];
WITH_OCD WITH_RANK
<< "__gc__:" << "swaping recycled "
<< pretty_print(newReady->info)
<< " and "
<< pretty_print(slice.info)
<< "\n";
newReady->markReady();
for (size_t i = 1; i < recycled.size(); i++) {
auto newRecyled = recycled[i];
newRecyled->info.recycling = newReady->info.type;
WITH_OCD WITH_RANK
<< "__gc__:" << "updating recycled "
<< pretty_print(newRecyled->info)
<< "\n";
}
}
}
slice.free();
} // we did not find the slice
}
}
void unwrapSlice(Slice<F>::Type t, ABCTuple abc, SliceUnion<F> *u) {
auto& slice = Slice<F>::findByTypeAbc(u->slices, t, abc);
switch (slice.info.state) {
case Slice<F>::Dispatched:
slice.markReady();
break;
case Slice<F>::Recycled:
unwrapSlice(t, abc, u);
break;
}
}
#define PRINT_VARIABLE(v) \
do { \
if (!rank) std::cout << "# " << #v << ": " << v << std::endl; \
} while (0)
int main(int argc, char** argv) {
MPI_Init(&argc, &argv);
int no(10), nv(100);
std::string tuplesDistributionString = "naive";
CLI::App app{"Main bench for atrip"};
app.add_option("--no", no, "Occupied orbitals");
app.add_option("--nv", nv, "Virtual orbitals");
app.add_option("--dist", tuplesDistributionString, "Which distribution");
CLI11_PARSE(app, argc, argv);
CTF::World world(argc, argv);
auto kaun = world.comm;
int rank, np;
MPI_Comm_rank(kaun, &rank);
MPI_Comm_size(kaun, &np);
Atrip::init(world.comm);
atrip::ABCTuples tuplesList;
atrip::TuplesDistribution *dist;
{
using namespace atrip;
if (tuplesDistributionString == "naive") {
dist = new NaiveDistribution();
tuplesList = dist->getTuples(nv, world.comm);
} else if (tuplesDistributionString == "group") {
dist = new group_and_sort::Distribution();
tuplesList = dist->getTuples(nv, world.comm);
} else {
std::cout << "--dist should be either naive or group\n";
exit(1);
}
}
double tuplesListGb
= tuplesList.size() * sizeof(tuplesList[0])
/ 1024.0 / 1024.0 / 1024.0;
std::cout << "\n";
PRINT_VARIABLE(tuplesDistributionString);
PRINT_VARIABLE(np);
PRINT_VARIABLE(no);
PRINT_VARIABLE(nv);
PRINT_VARIABLE(tuplesList.size());
PRINT_VARIABLE(tuplesListGb);
// create a fake dry tensor
Tr t_abph, t_abhh, t_tabhh, t_taphh, t_hhha;
INIT_DRY(t_abph , {nv, nv, nv, no});
INIT_DRY(t_abhh , {nv, nv, no, no});
INIT_DRY(t_tabhh , {nv, nv, no, no});
INIT_DRY(t_taphh , {nv, nv, no, no});
INIT_DRY(t_hhha , {no, no, no, nv});
ABPH<F> abph(t_abph, (size_t)no, (size_t)nv, (size_t)np, kaun, kaun);
ABHH<F> abhh(t_abhh, (size_t)no, (size_t)nv, (size_t)np, kaun, kaun);
TABHH<F> tabhh(t_tabhh, (size_t)no, (size_t)nv, (size_t)np, kaun, kaun);
TAPHH<F> taphh(t_taphh, (size_t)no, (size_t)nv, (size_t)np, kaun, kaun);
HHHA<F> hhha(t_hhha, (size_t)no, (size_t)nv, (size_t)np, kaun, kaun);
std::vector< SliceUnion<F>* > unions = {&taphh, &hhha, &abph, &abhh, &tabhh};
using Database = typename Slice<F>::Database;
auto communicateDatabase
= [ &unions
, np
] (ABCTuple const& abc, MPI_Comm const& c) -> Database {
WITH_CHRONO("db:comm:type:do",
auto MPI_LDB_ELEMENT = Slice<F>::mpi::localDatabaseElement();
)
WITH_CHRONO("db:comm:ldb",
typename Slice<F>::LocalDatabase ldb;
for (auto const& tensor: unions) {
auto const& tensorDb = buildLocalDatabase(*tensor, abc);
ldb.insert(ldb.end(), tensorDb.begin(), tensorDb.end());
}
)
Database db(np * ldb.size(), ldb[0]);
WITH_CHRONO("oneshot-db:comm:allgather",
WITH_CHRONO("db:comm:allgather",
MPI_Allgather(ldb.data(),
/* ldb.size() * sizeof(typename
Slice<F>::LocalDatabaseElement) */
ldb.size(),
MPI_LDB_ELEMENT,
db.data(),
/* ldb.size() * sizeof(typename
Slice<F>::LocalDatabaseElement), */
ldb.size(),
MPI_LDB_ELEMENT,
c);
))
WITH_CHRONO("db:comm:type:free", MPI_Type_free(&MPI_LDB_ELEMENT);)
return db;
};
auto doIOPhase
= [&unions, &rank, &np] (Database const& db,
std::vector<LocalDatabaseElement> &to_send) {
const size_t localDBLength = db.size() / np;
size_t sendTag = 0
, recvTag = rank * localDBLength
;
{
// At this point, we have already send to everyone that fits
auto const& begin = &db[rank * localDBLength]
, end = begin + localDBLength
;
for (auto it = begin; it != end; ++it) {
recvTag++;
auto const& el = *it;
auto& u = unionByName(unions, el.name);
auto& slice = Slice<F>::findByInfo(u.slices, el.info);
slice.markReady();
// u.receive(el.info, recvTag);
} // recv
}
// SEND PHASE =========================================================
for (size_t otherRank = 0; otherRank < np; otherRank++) {
auto const& begin = &db[otherRank * localDBLength]
, end = begin + localDBLength
;
for (auto it = begin; it != end; ++it) {
sendTag++;
typename Slice<F>::LocalDatabaseElement const& el = *it;
if (el.info.from.rank != rank) continue;
auto& u = unionByName(unions, el.name);
if (el.info.state == Slice<F>::Fetch) {
to_send.push_back(el);
}
// u.send(otherRank, el, sendTag);
} // send phase
} // otherRank
};
std::vector<LocalDatabaseElement>
to_send;
for (size_t it = 0; it < tuplesList.size(); it++) {
const ABCTuple abc = dist->tupleIsFake(tuplesList[it])
? tuplesList[tuplesList.size() - 1]
: tuplesList[it]
;
if (it > 0) {
for (auto const& u: unions) {
clearUnusedSlicesForNext(*u, abc);
}
}
const auto db = communicateDatabase(abc, kaun);
doIOPhase(db, to_send);
if (it % 1000 == 0)
std::cout << _FORMAT("%ld :it %ld %f %% ∷ %ld ∷ %f GB\n",
rank,
it,
100.0 * double(to_send.size()) / double(tuplesList.size()),
to_send.size(),
double(to_send.size()) * sizeof(to_send[0])
/ 1024.0 / 1024.0 / 1024.0);
for (auto const& u: unions) {
for (auto type: u->sliceTypes) {
unwrapSlice(type, abc, u);
}
}
}
std::cout << "=========================================================\n";
std::cout << "FINISHING, it will segfaulten, that's ok, don't even trip"
<< std::endl;
MPI_Barrier(kaun);
DEINIT_DRY(t_abph);
DEINIT_DRY(t_abhh);
DEINIT_DRY(t_tabhh);
DEINIT_DRY(t_taphh);
DEINIT_DRY(t_hhha);
MPI_Finalize();
return 0;
}

12
bench/utils.hpp Normal file
View File

@ -0,0 +1,12 @@
#ifndef UTILS_HPP_
#define UTILS_HPP_
#define _FORMAT(_fmt, ...) \
([&] (void) -> std::string { \
int _sz = std::snprintf(nullptr, 0, _fmt, __VA_ARGS__); \
std::vector<char> _out(_sz + 1); \
std::snprintf(&_out[0], _out.size(), _fmt, __VA_ARGS__); \
return std::string(_out.data()); \
})()
#endif

View File

@ -0,0 +1,20 @@
#pragma once
#include <atrip/Utils.hpp>
#include <atrip/Equations.hpp>
#include <atrip/SliceUnion.hpp>
#include <atrip/Unions.hpp>
namespace atrip {
template <typename F>
using Unions = std::vector<SliceUnion<F>*>;
template <typename F>
typename Slice<F>::Database
naiveDatabase(Unions<F> &unions,
size_t nv,
size_t np,
size_t iteration,
MPI_Comm const& c);
} // namespace atrip

View File

@ -52,43 +52,7 @@ struct TuplesDistribution {
// Distributing the tuples:1 ends here
// [[file:~/cuda/atrip/atrip.org::*Node%20information][Node information:1]]
std::vector<std::string> getNodeNames(MPI_Comm comm){
int rank, np;
MPI_Comm_rank(comm, &rank);
MPI_Comm_size(comm, &np);
std::vector<std::string> nodeList(np);
char nodeName[MPI_MAX_PROCESSOR_NAME];
char *nodeNames = (char*)malloc(np * MPI_MAX_PROCESSOR_NAME);
std::vector<int> nameLengths(np)
, off(np)
;
int nameLength;
MPI_Get_processor_name(nodeName, &nameLength);
MPI_Allgather(&nameLength,
1,
MPI_INT,
nameLengths.data(),
1,
MPI_INT,
comm);
for (int i(1); i < np; i++)
off[i] = off[i-1] + nameLengths[i-1];
MPI_Allgatherv(nodeName,
nameLengths[rank],
MPI_BYTE,
nodeNames,
nameLengths.data(),
off.data(),
MPI_BYTE,
comm);
for (int i(0); i < np; i++) {
std::string const s(&nodeNames[off[i]], nameLengths[i]);
nodeList[i] = s;
}
std::free(nodeNames);
return nodeList;
}
std::vector<std::string> getNodeNames(MPI_Comm comm);
// Node information:1 ends here
// [[file:~/cuda/atrip/atrip.org::*Node%20information][Node information:2]]
@ -100,118 +64,28 @@ struct RankInfo {
const size_t ranksPerNode;
};
template <typename A>
A unique(A const &xs) {
auto result = xs;
std::sort(std::begin(result), std::end(result));
auto const& last = std::unique(std::begin(result), std::end(result));
result.erase(last, std::end(result));
return result;
}
std::vector<RankInfo>
getNodeInfos(std::vector<string> const& nodeNames) {
std::vector<RankInfo> result;
auto const uniqueNames = unique(nodeNames);
auto const index = [&uniqueNames](std::string const& s) {
auto const& it = std::find(uniqueNames.begin(), uniqueNames.end(), s);
return std::distance(uniqueNames.begin(), it);
};
std::vector<size_t> localRanks(uniqueNames.size(), 0);
size_t globalRank = 0;
for (auto const& name: nodeNames) {
const size_t nodeId = index(name);
result.push_back({name,
nodeId,
globalRank++,
localRanks[nodeId]++,
(size_t)
std::count(nodeNames.begin(),
nodeNames.end(),
name)
});
}
return result;
}
getNodeInfos(std::vector<string> const& nodeNames);
struct ClusterInfo {
const size_t nNodes, np, ranksPerNode;
const std::vector<RankInfo> rankInfos;
};
ClusterInfo
getClusterInfo(MPI_Comm comm) {
auto const names = getNodeNames(comm);
auto const rankInfos = getNodeInfos(names);
return ClusterInfo {
unique(names).size(),
names.size(),
rankInfos[0].ranksPerNode,
rankInfos
};
}
ClusterInfo getClusterInfo(MPI_Comm comm);
// Node information:2 ends here
// [[file:~/cuda/atrip/atrip.org::*Naive%20list][Naive list:1]]
ABCTuples getTuplesList(size_t Nv, size_t rank, size_t np) {
const size_t
// total number of tuples for the problem
n = Nv * (Nv + 1) * (Nv + 2) / 6 - Nv
// all ranks should have the same number of tuples_per_rank
, tuples_per_rank = n / np + size_t(n % np != 0)
// start index for the global tuples list
, start = tuples_per_rank * rank
// end index for the global tuples list
, end = tuples_per_rank * (rank + 1)
;
LOG(1,"Atrip") << "tuples_per_rank = " << tuples_per_rank << "\n";
WITH_RANK << "start, end = " << start << ", " << end << "\n";
ABCTuples result(tuples_per_rank, FAKE_TUPLE);
for (size_t a(0), r(0), g(0); a < Nv; a++)
for (size_t b(a); b < Nv; b++)
for (size_t c(b); c < Nv; c++){
if ( a == b && b == c ) continue;
if ( start <= g && g < end) result[r++] = {a, b, c};
g++;
}
return result;
}
ABCTuples getTuplesList(size_t Nv, size_t rank, size_t np);
// Naive list:1 ends here
// [[file:~/cuda/atrip/atrip.org::*Naive%20list][Naive list:2]]
ABCTuples getAllTuplesList(const size_t Nv) {
const size_t n = Nv * (Nv + 1) * (Nv + 2) / 6 - Nv;
ABCTuples result(n);
for (size_t a(0), u(0); a < Nv; a++)
for (size_t b(a); b < Nv; b++)
for (size_t c(b); c < Nv; c++){
if ( a == b && b == c ) continue;
result[u++] = {a, b, c};
}
return result;
}
ABCTuples getAllTuplesList(const size_t Nv);
// Naive list:2 ends here
// [[file:~/cuda/atrip/atrip.org::*Naive%20list][Naive list:3]]
struct NaiveDistribution : public TuplesDistribution {
ABCTuples getTuples(size_t Nv, MPI_Comm universe) override {
int rank, np;
MPI_Comm_rank(universe, &rank);
MPI_Comm_size(universe, &np);
return getTuplesList(Nv, (size_t)rank, (size_t)np);
}
ABCTuples getTuples(size_t Nv, MPI_Comm universe) override;
};
// Naive list:3 ends here
@ -224,19 +98,12 @@ namespace group_and_sort {
// Right now we distribute the slices in a round robin fashion
// over the different nodes (NOTE: not mpi ranks but nodes)
inline
size_t isOnNode(size_t tuple, size_t nNodes) { return tuple % nNodes; }
size_t isOnNode(size_t tuple, size_t nNodes);
// return the node (or all nodes) where the elements of this
// tuple are located
std::vector<size_t> getTupleNodes(ABCTuple const& t, size_t nNodes) {
std::vector<size_t>
nTuple = { isOnNode(t[0], nNodes)
, isOnNode(t[1], nNodes)
, isOnNode(t[2], nNodes)
};
return unique(nTuple);
}
std::vector<size_t> getTupleNodes(ABCTuple const& t, size_t nNodes);
struct Info {
size_t nNodes;
@ -245,302 +112,16 @@ struct Info {
// Utils:1 ends here
// [[file:~/cuda/atrip/atrip.org::*Distribution][Distribution:1]]
ABCTuples specialDistribution(Info const& info, ABCTuples const& allTuples) {
ABCTuples nodeTuples;
size_t const nNodes(info.nNodes);
std::vector<ABCTuples>
container1d(nNodes)
, container2d(nNodes * nNodes)
, container3d(nNodes * nNodes * nNodes)
;
WITH_DBG if (info.nodeId == 0)
std::cout << "\tGoing through all "
<< allTuples.size()
<< " tuples in "
<< nNodes
<< " nodes\n";
// build container-n-d's
for (auto const& t: allTuples) {
// one which node(s) are the tuple elements located...
// put them into the right container
auto const _nodes = getTupleNodes(t, nNodes);
switch (_nodes.size()) {
case 1:
container1d[_nodes[0]].push_back(t);
break;
case 2:
container2d[ _nodes[0]
+ _nodes[1] * nNodes
].push_back(t);
break;
case 3:
container3d[ _nodes[0]
+ _nodes[1] * nNodes
+ _nodes[2] * nNodes * nNodes
].push_back(t);
break;
}
}
WITH_DBG if (info.nodeId == 0)
std::cout << "\tBuilding 1-d containers\n";
// DISTRIBUTE 1-d containers
// every tuple which is only located at one node belongs to this node
{
auto const& _tuples = container1d[info.nodeId];
nodeTuples.resize(_tuples.size(), INVALID_TUPLE);
std::copy(_tuples.begin(), _tuples.end(), nodeTuples.begin());
}
WITH_DBG if (info.nodeId == 0)
std::cout << "\tBuilding 2-d containers\n";
// DISTRIBUTE 2-d containers
//the tuples which are located at two nodes are half/half given to these nodes
for (size_t yx = 0; yx < container2d.size(); yx++) {
auto const& _tuples = container2d[yx];
const
size_t idx = yx % nNodes
// remeber: yx = idy * nNodes + idx
, idy = yx / nNodes
, n_half = _tuples.size() / 2
, size = nodeTuples.size()
;
size_t nbeg, nend;
if (info.nodeId == idx) {
nbeg = 0 * n_half;
nend = n_half;
} else if (info.nodeId == idy) {
nbeg = 1 * n_half;
nend = _tuples.size();
} else {
// either idx or idy is my node
continue;
}
size_t const nextra = nend - nbeg;
nodeTuples.resize(size + nextra, INVALID_TUPLE);
std::copy(_tuples.begin() + nbeg,
_tuples.begin() + nend,
nodeTuples.begin() + size);
}
WITH_DBG if (info.nodeId == 0)
std::cout << "\tBuilding 3-d containers\n";
// DISTRIBUTE 3-d containers
for (size_t zyx = 0; zyx < container3d.size(); zyx++) {
auto const& _tuples = container3d[zyx];
const
size_t idx = zyx % nNodes
, idy = (zyx / nNodes) % nNodes
// remember: zyx = idx + idy * nNodes + idz * nNodes^2
, idz = zyx / nNodes / nNodes
, n_third = _tuples.size() / 3
, size = nodeTuples.size()
;
size_t nbeg, nend;
if (info.nodeId == idx) {
nbeg = 0 * n_third;
nend = 1 * n_third;
} else if (info.nodeId == idy) {
nbeg = 1 * n_third;
nend = 2 * n_third;
} else if (info.nodeId == idz) {
nbeg = 2 * n_third;
nend = _tuples.size();
} else {
// either idx or idy or idz is my node
continue;
}
size_t const nextra = nend - nbeg;
nodeTuples.resize(size + nextra, INVALID_TUPLE);
std::copy(_tuples.begin() + nbeg,
_tuples.begin() + nend,
nodeTuples.begin() + size);
}
WITH_DBG if (info.nodeId == 0) std::cout << "\tswapping tuples...\n";
/*
* sort part of group-and-sort algorithm
* every tuple on a given node is sorted in a way that
* the 'home elements' are the fastest index.
* 1:yyy 2:yyn(x) 3:yny(x) 4:ynn(x) 5:nyy 6:nyn(x) 7:nny 8:nnn
*/
for (auto &nt: nodeTuples){
if ( isOnNode(nt[0], nNodes) == info.nodeId ){ // 1234
if ( isOnNode(nt[2], nNodes) != info.nodeId ){ // 24
size_t const x(nt[0]);
nt[0] = nt[2]; // switch first and last
nt[2] = x;
}
else if ( isOnNode(nt[1], nNodes) != info.nodeId){ // 3
size_t const x(nt[0]);
nt[0] = nt[1]; // switch first two
nt[1] = x;
}
} else {
if ( isOnNode(nt[1], nNodes) == info.nodeId // 56
&& isOnNode(nt[2], nNodes) != info.nodeId
) { // 6
size_t const x(nt[1]);
nt[1] = nt[2]; // switch last two
nt[2] = x;
}
}
}
WITH_DBG if (info.nodeId == 0) std::cout << "\tsorting list of tuples...\n";
//now we sort the list of tuples
std::sort(nodeTuples.begin(), nodeTuples.end());
WITH_DBG if (info.nodeId == 0) std::cout << "\trestoring tuples...\n";
// we bring the tuples abc back in the order a<b<c
for (auto &t: nodeTuples) std::sort(t.begin(), t.end());
#if ATRIP_DEBUG > 1
WITH_DBG if (info.nodeId == 0)
std::cout << "checking for validity of " << nodeTuples.size() << std::endl;
const bool anyInvalid
= std::any_of(nodeTuples.begin(),
nodeTuples.end(),
[](ABCTuple const& t) { return t == INVALID_TUPLE; });
if (anyInvalid) throw "Some tuple is invalid in group-and-sort algorithm";
#endif
WITH_DBG if (info.nodeId == 0) std::cout << "\treturning tuples...\n";
return nodeTuples;
}
ABCTuples specialDistribution(Info const& info, ABCTuples const& allTuples);
// Distribution:1 ends here
// [[file:~/cuda/atrip/atrip.org::*Main][Main:1]]
std::vector<ABCTuple> main(MPI_Comm universe, size_t Nv) {
int rank, np;
MPI_Comm_rank(universe, &rank);
MPI_Comm_size(universe, &np);
std::vector<ABCTuple> result;
auto const nodeNames(getNodeNames(universe));
size_t const nNodes = unique(nodeNames).size();
auto const nodeInfos = getNodeInfos(nodeNames);
// We want to construct a communicator which only contains of one
// element per node
bool const computeDistribution
= nodeInfos[rank].localRank == 0;
std::vector<ABCTuple>
nodeTuples
= computeDistribution
? specialDistribution(Info{nNodes, nodeInfos[rank].nodeId},
getAllTuplesList(Nv))
: std::vector<ABCTuple>()
;
LOG(1,"Atrip") << "got nodeTuples\n";
// now we have to send the data from **one** rank on each node
// to all others ranks of this node
const
int color = nodeInfos[rank].nodeId
, key = nodeInfos[rank].localRank
;
MPI_Comm INTRA_COMM;
MPI_Comm_split(universe, color, key, &INTRA_COMM);
// Main:1 ends here
// [[file:~/cuda/atrip/atrip.org::*Main][Main:2]]
size_t const
tuplesPerRankLocal
= nodeTuples.size() / nodeInfos[rank].ranksPerNode
+ size_t(nodeTuples.size() % nodeInfos[rank].ranksPerNode != 0)
;
size_t tuplesPerRankGlobal;
MPI_Reduce(&tuplesPerRankLocal,
&tuplesPerRankGlobal,
1,
MPI_UINT64_T,
MPI_MAX,
0,
universe);
MPI_Bcast(&tuplesPerRankGlobal,
1,
MPI_UINT64_T,
0,
universe);
LOG(1,"Atrip") << "Tuples per rank: " << tuplesPerRankGlobal << "\n";
LOG(1,"Atrip") << "ranks per node " << nodeInfos[rank].ranksPerNode << "\n";
LOG(1,"Atrip") << "#nodes " << nNodes << "\n";
// Main:2 ends here
// [[file:~/cuda/atrip/atrip.org::*Main][Main:3]]
size_t const totalTuples
= tuplesPerRankGlobal * nodeInfos[rank].ranksPerNode;
if (computeDistribution) {
// pad with FAKE_TUPLEs
nodeTuples.insert(nodeTuples.end(),
totalTuples - nodeTuples.size(),
FAKE_TUPLE);
}
// Main:3 ends here
// [[file:~/cuda/atrip/atrip.org::*Main][Main:4]]
{
// construct mpi type for abctuple
MPI_Datatype MPI_ABCTUPLE;
MPI_Type_vector(nodeTuples[0].size(), 1, 1, MPI_UINT64_T, &MPI_ABCTUPLE);
MPI_Type_commit(&MPI_ABCTUPLE);
LOG(1,"Atrip") << "scattering tuples \n";
result.resize(tuplesPerRankGlobal);
MPI_Scatter(nodeTuples.data(),
tuplesPerRankGlobal,
MPI_ABCTUPLE,
result.data(),
tuplesPerRankGlobal,
MPI_ABCTUPLE,
0,
INTRA_COMM);
MPI_Type_free(&MPI_ABCTUPLE);
}
// Main:4 ends here
// [[file:~/cuda/atrip/atrip.org::*Main][Main:5]]
return result;
}
std::vector<ABCTuple> main(MPI_Comm universe, size_t Nv);
// Main:5 ends here
// [[file:~/cuda/atrip/atrip.org::*Interface][Interface:1]]
struct Distribution : public TuplesDistribution {
ABCTuples getTuples(size_t Nv, MPI_Comm universe) override {
return main(universe, Nv);
}
ABCTuples getTuples(size_t Nv, MPI_Comm universe) override;
};
// Interface:1 ends here

View File

@ -12,6 +12,7 @@ let
};
openblas = import ./etc/nix/openblas.nix { inherit pkgs; };
vendor = import ./etc/nix/vendor-shell.nix;
mkl-pkg = import ./etc/nix/mkl.nix { pkgs = unfree-pkgs; };
cuda-pkg = if cuda then (import ./cuda.nix { pkgs = unfree-pkgs; }) else {};
@ -57,14 +58,15 @@ pkgs.mkShell rec {
buildInputs
= with pkgs; [
gdb
coreutils
git vim
git
vim
openmpi
llvmPackages.openmp
binutils
emacs
gfortran
gnumake
@ -84,6 +86,15 @@ pkgs.mkShell rec {
shellHook
=
''
${vendor.src}
${vendor.cpath "${pkgs.openmpi.out}/include"}
${vendor.cpath "${openblas.pkg.dev}/include"}
${vendor.lib "${pkgs.openmpi.out}/lib"}
${vendor.lib "${openblas.pkg.out}/lib"}
export OMPI_CXX=${CXX}
export OMPI_CC=${CC}
CXX=${CXX}

View File

@ -7,7 +7,7 @@ AM_CPPFLAGS = $(CTF_CPPFLAGS)
lib_LIBRARIES = libatrip.a
libatrip_a_CPPFLAGS = -I$(top_srcdir)/include/
libatrip_a_SOURCES = ./atrip/Blas.cxx
libatrip_a_SOURCES = ./atrip/Blas.cxx ./atrip/Tuples.cxx ./atrip/DatabaseCommunicator.cxx
NVCC_FILES = ./atrip/Equations.cxx ./atrip/Complex.cxx ./atrip/Atrip.cxx
if WITH_CUDA

View File

@ -21,6 +21,7 @@
#include <atrip/SliceUnion.hpp>
#include <atrip/Unions.hpp>
#include <atrip/Checkpoint.hpp>
#include <atrip/DatabaseCommunicator.hpp>
using namespace atrip;
#if defined(HAVE_CUDA)
@ -299,9 +300,16 @@ Atrip::Output Atrip::run(Atrip::Input<F> const& in) {
using Database = typename Slice<F>::Database;
auto communicateDatabase
= [ &unions
, &in
, Nv
, np
] (ABCTuple const& abc, MPI_Comm const& c) -> Database {
] (ABCTuple const& abc, MPI_Comm const& c, size_t iteration) -> Database {
if (in.tuplesDistribution == Atrip::Input<F>::TuplesDistribution::NAIVE) {
return naiveDatabase<F>(unions, Nv, np, iteration, c);
} else {
WITH_CHRONO("db:comm:type:do",
auto MPI_LDB_ELEMENT = Slice<F>::mpi::localDatabaseElement();
)
@ -334,6 +342,8 @@ Atrip::Output Atrip::run(Atrip::Input<F> const& in) {
WITH_CHRONO("db:comm:type:free", MPI_Type_free(&MPI_LDB_ELEMENT);)
return db;
}
};
auto doIOPhase
@ -564,7 +574,7 @@ Atrip::Output Atrip::run(Atrip::Input<F> const& in) {
// COMM FIRST DATABASE ================================================{{{1
if (i == first_iteration) {
WITH_RANK << "__first__:first database ............ \n";
const auto db = communicateDatabase(abc, universe);
const auto db = communicateDatabase(abc, universe, i);
WITH_RANK << "__first__:first database communicated \n";
WITH_RANK << "__first__:first database io phase \n";
doIOPhase(db);
@ -579,7 +589,7 @@ Atrip::Output Atrip::run(Atrip::Input<F> const& in) {
if (abcNext) {
WITH_RANK << "__comm__:" << iteration << "th communicating database\n";
WITH_CHRONO("db:comm",
const auto db = communicateDatabase(*abcNext, universe);
const auto db = communicateDatabase(*abcNext, universe, i);
)
WITH_CHRONO("db:io",
doIOPhase(db);

View File

@ -0,0 +1,167 @@
#include <atrip/DatabaseCommunicator.hpp>
#include <atrip/Complex.hpp>
namespace atrip {
static
ABCTuples get_nth_naive_tuples(size_t Nv, size_t np) {
const size_t
// total number of tuples for the problem
n = Nv * (Nv + 1) * (Nv + 2) / 6 - Nv
// all ranks should have the same number of tuples_per_rank
, tuples_per_rank = n / np + size_t(n % np != 0)
;
ABCTuples result(np);
for (size_t a(0), g(0); a < Nv; a++)
for (size_t b(a); b < Nv; b++)
for (size_t c(b); c < Nv; c++){
if ( a == b && b == c ) continue;
for (size_t rank = 0; rank < np; rank++) {
const size_t
// start index for the global tuples list
start = tuples_per_rank * rank
// end index for the global tuples list
, end = tuples_per_rank * (rank + 1)
;
if ( start <= g && g < end) result[rank] = {a, b, c};
}
g++;
}
return result;
}
template <typename F>
static
typename Slice<F>::LocalDatabase
build_local_database_fake(ABCTuple const& abc_prev,
ABCTuple const& abc,
size_t rank,
SliceUnion<F>* u) {
typename Slice<F>::LocalDatabase result;
// vector of type x tuple
auto const needed = u->neededSlices(abc);
auto const needed_prev = u->neededSlices(abc_prev);
for (auto const& pair: needed) {
auto const type = pair.first;
auto const tuple = pair.second;
auto const from = u->rankMap.find(abc, type);
// Try to find in the previously needed slices
// one that exactly matches the tuple.
// Not necessarily has to match the type.
//
// If we find it, then it means that the fake rank
// will mark it as recycled. This covers
// the finding of Ready slices and Recycled slices.
{
auto const& it
= std::find_if(needed_prev.begin(), needed_prev.end(),
[&tuple, &type](typename Slice<F>::Ty_x_Tu const& o) {
return o.second == tuple;
});
if (it != needed_prev.end()) {
typename Slice<F>::Info info;
info.tuple = tuple;
info.type = type;
info.from = from;
info.state = Slice<F>::Recycled;
result.push_back({u->name, info});
continue;
}
}
{
typename Slice<F>::Info info;
info.type = type;
info.tuple = tuple;
info.from = from;
// Handle self sufficiency
info.state = rank == from.rank
? Slice<F>::SelfSufficient
: Slice<F>::Fetch
;
result.push_back({u->name, info});
continue;
}
}
return result;
}
template <typename F>
typename Slice<F>::Database
naiveDatabase(Unions<F> &unions,
size_t nv,
size_t np,
size_t iteration,
MPI_Comm const& c) {
using Database = typename Slice<F>::Database;
Database db;
const auto tuples = get_nth_naive_tuples(nv, np);
const auto prev_tuples = get_nth_naive_tuples(nv, np);
for (size_t rank = 0; rank < np; rank++) {
auto abc = tuples[rank];
typename Slice<F>::LocalDatabase ldb;
for (auto const& tensor: unions) {
if (rank == Atrip::rank) {
auto const& tensorDb = tensor->buildLocalDatabase(abc);
ldb.insert(ldb.end(), tensorDb.begin(), tensorDb.end());
} else {
auto const& tensorDb
= build_local_database_fake(prev_tuples[rank],
abc,
rank,
tensor);
ldb.insert(ldb.end(), tensorDb.begin(), tensorDb.end());
}
}
db.insert(db.end(), ldb.begin(), ldb.end());
}
return db;
}
template
typename Slice<double>::Database
naiveDatabase<double>(Unions<double> &unions,
size_t nv,
size_t np,
size_t iteration,
MPI_Comm const& c);
template
typename Slice<Complex>::Database
naiveDatabase<Complex>(Unions<Complex> &unions,
size_t nv,
size_t np,
size_t iteration,
MPI_Comm const& c);
} // namespace atrip

464
src/atrip/Tuples.cxx Normal file
View File

@ -0,0 +1,464 @@
#include <atrip/Tuples.hpp>
#include <atrip/Atrip.hpp>
namespace atrip {
template <typename A>
static A unique(A const &xs) {
auto result = xs;
std::sort(std::begin(result), std::end(result));
auto const& last = std::unique(std::begin(result), std::end(result));
result.erase(last, std::end(result));
return result;
}
std::vector<std::string> getNodeNames(MPI_Comm comm){
int rank, np;
MPI_Comm_rank(comm, &rank);
MPI_Comm_size(comm, &np);
std::vector<std::string> nodeList(np);
char nodeName[MPI_MAX_PROCESSOR_NAME];
char *nodeNames = (char*)malloc(np * MPI_MAX_PROCESSOR_NAME);
std::vector<int> nameLengths(np)
, off(np)
;
int nameLength;
MPI_Get_processor_name(nodeName, &nameLength);
MPI_Allgather(&nameLength,
1,
MPI_INT,
nameLengths.data(),
1,
MPI_INT,
comm);
for (int i(1); i < np; i++)
off[i] = off[i-1] + nameLengths[i-1];
MPI_Allgatherv(nodeName,
nameLengths[rank],
MPI_BYTE,
nodeNames,
nameLengths.data(),
off.data(),
MPI_BYTE,
comm);
for (int i(0); i < np; i++) {
std::string const s(&nodeNames[off[i]], nameLengths[i]);
nodeList[i] = s;
}
std::free(nodeNames);
return nodeList;
}
std::vector<RankInfo>
getNodeInfos(std::vector<string> const& nodeNames) {
std::vector<RankInfo> result;
auto const uniqueNames = unique(nodeNames);
auto const index = [&uniqueNames](std::string const& s) {
auto const& it = std::find(uniqueNames.begin(), uniqueNames.end(), s);
return std::distance(uniqueNames.begin(), it);
};
std::vector<size_t> localRanks(uniqueNames.size(), 0);
size_t globalRank = 0;
for (auto const& name: nodeNames) {
const size_t nodeId = index(name);
result.push_back({name,
nodeId,
globalRank++,
localRanks[nodeId]++,
(size_t)
std::count(nodeNames.begin(),
nodeNames.end(),
name)
});
}
return result;
}
ClusterInfo
getClusterInfo(MPI_Comm comm) {
auto const names = getNodeNames(comm);
auto const rankInfos = getNodeInfos(names);
return ClusterInfo {
unique(names).size(),
names.size(),
rankInfos[0].ranksPerNode,
rankInfos
};
}
ABCTuples getTuplesList(size_t Nv, size_t rank, size_t np) {
const size_t
// total number of tuples for the problem
n = Nv * (Nv + 1) * (Nv + 2) / 6 - Nv
// all ranks should have the same number of tuples_per_rank
, tuples_per_rank = n / np + size_t(n % np != 0)
// start index for the global tuples list
, start = tuples_per_rank * rank
// end index for the global tuples list
, end = tuples_per_rank * (rank + 1)
;
LOG(1,"Atrip") << "tuples_per_rank = " << tuples_per_rank << "\n";
WITH_RANK << "start, end = " << start << ", " << end << "\n";
ABCTuples result(tuples_per_rank, FAKE_TUPLE);
for (size_t a(0), r(0), g(0); a < Nv; a++)
for (size_t b(a); b < Nv; b++)
for (size_t c(b); c < Nv; c++){
if ( a == b && b == c ) continue;
if ( start <= g && g < end) result[r++] = {a, b, c};
g++;
}
return result;
}
ABCTuples getAllTuplesList(const size_t Nv) {
const size_t n = Nv * (Nv + 1) * (Nv + 2) / 6 - Nv;
ABCTuples result(n);
for (size_t a(0), u(0); a < Nv; a++)
for (size_t b(a); b < Nv; b++)
for (size_t c(b); c < Nv; c++){
if ( a == b && b == c ) continue;
result[u++] = {a, b, c};
}
return result;
}
ABCTuples atrip::NaiveDistribution::getTuples(size_t Nv, MPI_Comm universe) {
int rank, np;
MPI_Comm_rank(universe, &rank);
MPI_Comm_size(universe, &np);
return getTuplesList(Nv, (size_t)rank, (size_t)np);
}
namespace group_and_sort {
inline
size_t isOnNode(size_t tuple, size_t nNodes) { return tuple % nNodes; }
std::vector<size_t> getTupleNodes(ABCTuple const& t, size_t nNodes) {
std::vector<size_t>
nTuple = { isOnNode(t[0], nNodes)
, isOnNode(t[1], nNodes)
, isOnNode(t[2], nNodes)
};
return unique(nTuple);
}
ABCTuples specialDistribution(Info const& info, ABCTuples const& allTuples) {
ABCTuples nodeTuples;
size_t const nNodes(info.nNodes);
std::vector<ABCTuples>
container1d(nNodes)
, container2d(nNodes * nNodes)
, container3d(nNodes * nNodes * nNodes)
;
WITH_DBG if (info.nodeId == 0)
std::cout << "\tGoing through all "
<< allTuples.size()
<< " tuples in "
<< nNodes
<< " nodes\n";
// build container-n-d's
for (auto const& t: allTuples) {
// one which node(s) are the tuple elements located...
// put them into the right container
auto const _nodes = getTupleNodes(t, nNodes);
switch (_nodes.size()) {
case 1:
container1d[_nodes[0]].push_back(t);
break;
case 2:
container2d[ _nodes[0]
+ _nodes[1] * nNodes
].push_back(t);
break;
case 3:
container3d[ _nodes[0]
+ _nodes[1] * nNodes
+ _nodes[2] * nNodes * nNodes
].push_back(t);
break;
}
}
WITH_DBG if (info.nodeId == 0)
std::cout << "\tBuilding 1-d containers\n";
// DISTRIBUTE 1-d containers
// every tuple which is only located at one node belongs to this node
{
auto const& _tuples = container1d[info.nodeId];
nodeTuples.resize(_tuples.size(), INVALID_TUPLE);
std::copy(_tuples.begin(), _tuples.end(), nodeTuples.begin());
}
WITH_DBG if (info.nodeId == 0)
std::cout << "\tBuilding 2-d containers\n";
// DISTRIBUTE 2-d containers
//the tuples which are located at two nodes are half/half given to these nodes
for (size_t yx = 0; yx < container2d.size(); yx++) {
auto const& _tuples = container2d[yx];
const
size_t idx = yx % nNodes
// remeber: yx = idy * nNodes + idx
, idy = yx / nNodes
, n_half = _tuples.size() / 2
, size = nodeTuples.size()
;
size_t nbeg, nend;
if (info.nodeId == idx) {
nbeg = 0 * n_half;
nend = n_half;
} else if (info.nodeId == idy) {
nbeg = 1 * n_half;
nend = _tuples.size();
} else {
// either idx or idy is my node
continue;
}
size_t const nextra = nend - nbeg;
nodeTuples.resize(size + nextra, INVALID_TUPLE);
std::copy(_tuples.begin() + nbeg,
_tuples.begin() + nend,
nodeTuples.begin() + size);
}
WITH_DBG if (info.nodeId == 0)
std::cout << "\tBuilding 3-d containers\n";
// DISTRIBUTE 3-d containers
for (size_t zyx = 0; zyx < container3d.size(); zyx++) {
auto const& _tuples = container3d[zyx];
const
size_t idx = zyx % nNodes
, idy = (zyx / nNodes) % nNodes
// remember: zyx = idx + idy * nNodes + idz * nNodes^2
, idz = zyx / nNodes / nNodes
, n_third = _tuples.size() / 3
, size = nodeTuples.size()
;
size_t nbeg, nend;
if (info.nodeId == idx) {
nbeg = 0 * n_third;
nend = 1 * n_third;
} else if (info.nodeId == idy) {
nbeg = 1 * n_third;
nend = 2 * n_third;
} else if (info.nodeId == idz) {
nbeg = 2 * n_third;
nend = _tuples.size();
} else {
// either idx or idy or idz is my node
continue;
}
size_t const nextra = nend - nbeg;
nodeTuples.resize(size + nextra, INVALID_TUPLE);
std::copy(_tuples.begin() + nbeg,
_tuples.begin() + nend,
nodeTuples.begin() + size);
}
WITH_DBG if (info.nodeId == 0) std::cout << "\tswapping tuples...\n";
/*
* sort part of group-and-sort algorithm
* every tuple on a given node is sorted in a way that
* the 'home elements' are the fastest index.
* 1:yyy 2:yyn(x) 3:yny(x) 4:ynn(x) 5:nyy 6:nyn(x) 7:nny 8:nnn
*/
for (auto &nt: nodeTuples){
if ( isOnNode(nt[0], nNodes) == info.nodeId ){ // 1234
if ( isOnNode(nt[2], nNodes) != info.nodeId ){ // 24
size_t const x(nt[0]);
nt[0] = nt[2]; // switch first and last
nt[2] = x;
}
else if ( isOnNode(nt[1], nNodes) != info.nodeId){ // 3
size_t const x(nt[0]);
nt[0] = nt[1]; // switch first two
nt[1] = x;
}
} else {
if ( isOnNode(nt[1], nNodes) == info.nodeId // 56
&& isOnNode(nt[2], nNodes) != info.nodeId
) { // 6
size_t const x(nt[1]);
nt[1] = nt[2]; // switch last two
nt[2] = x;
}
}
}
WITH_DBG if (info.nodeId == 0) std::cout << "\tsorting list of tuples...\n";
//now we sort the list of tuples
std::sort(nodeTuples.begin(), nodeTuples.end());
WITH_DBG if (info.nodeId == 0) std::cout << "\trestoring tuples...\n";
// we bring the tuples abc back in the order a<b<c
for (auto &t: nodeTuples) std::sort(t.begin(), t.end());
#if ATRIP_DEBUG > 1
WITH_DBG if (info.nodeId == 0)
std::cout << "checking for validity of " << nodeTuples.size() << std::endl;
const bool anyInvalid
= std::any_of(nodeTuples.begin(),
nodeTuples.end(),
[](ABCTuple const& t) { return t == INVALID_TUPLE; });
if (anyInvalid) throw "Some tuple is invalid in group-and-sort algorithm";
#endif
WITH_DBG if (info.nodeId == 0) std::cout << "\treturning tuples...\n";
return nodeTuples;
}
std::vector<ABCTuple> main(MPI_Comm universe, size_t Nv) {
int rank, np;
MPI_Comm_rank(universe, &rank);
MPI_Comm_size(universe, &np);
std::vector<ABCTuple> result;
auto const nodeNames(getNodeNames(universe));
size_t const nNodes = unique(nodeNames).size();
auto const nodeInfos = getNodeInfos(nodeNames);
// We want to construct a communicator which only contains of one
// element per node
bool const computeDistribution
= nodeInfos[rank].localRank == 0;
std::vector<ABCTuple>
nodeTuples
= computeDistribution
? specialDistribution(Info{nNodes, nodeInfos[rank].nodeId},
getAllTuplesList(Nv))
: std::vector<ABCTuple>()
;
LOG(1,"Atrip") << "got nodeTuples\n";
// now we have to send the data from **one** rank on each node
// to all others ranks of this node
const
int color = nodeInfos[rank].nodeId,
key = nodeInfos[rank].localRank
;
MPI_Comm INTRA_COMM;
MPI_Comm_split(universe, color, key, &INTRA_COMM);
// Main:1 ends here
// [[file:~/cuda/atrip/atrip.org::*Main][Main:2]]
size_t const
tuplesPerRankLocal
= nodeTuples.size() / nodeInfos[rank].ranksPerNode
+ size_t(nodeTuples.size() % nodeInfos[rank].ranksPerNode != 0)
;
size_t tuplesPerRankGlobal;
MPI_Reduce(&tuplesPerRankLocal,
&tuplesPerRankGlobal,
1,
MPI_UINT64_T,
MPI_MAX,
0,
universe);
MPI_Bcast(&tuplesPerRankGlobal,
1,
MPI_UINT64_T,
0,
universe);
LOG(1,"Atrip") << "Tuples per rank: " << tuplesPerRankGlobal << "\n";
LOG(1,"Atrip") << "ranks per node " << nodeInfos[rank].ranksPerNode << "\n";
LOG(1,"Atrip") << "#nodes " << nNodes << "\n";
// Main:2 ends here
// [[file:~/cuda/atrip/atrip.org::*Main][Main:3]]
size_t const totalTuples
= tuplesPerRankGlobal * nodeInfos[rank].ranksPerNode;
if (computeDistribution) {
// pad with FAKE_TUPLEs
nodeTuples.insert(nodeTuples.end(),
totalTuples - nodeTuples.size(),
FAKE_TUPLE);
}
// Main:3 ends here
// [[file:~/cuda/atrip/atrip.org::*Main][Main:4]]
{
// construct mpi type for abctuple
MPI_Datatype MPI_ABCTUPLE;
MPI_Type_vector(nodeTuples[0].size(), 1, 1, MPI_UINT64_T, &MPI_ABCTUPLE);
MPI_Type_commit(&MPI_ABCTUPLE);
LOG(1,"Atrip") << "scattering tuples \n";
result.resize(tuplesPerRankGlobal);
MPI_Scatter(nodeTuples.data(),
tuplesPerRankGlobal,
MPI_ABCTUPLE,
result.data(),
tuplesPerRankGlobal,
MPI_ABCTUPLE,
0,
INTRA_COMM);
MPI_Type_free(&MPI_ABCTUPLE);
}
return result;
}
ABCTuples Distribution::getTuples(size_t Nv, MPI_Comm universe) {
return main(universe, Nv);
}
} // namespace group_and_sort
} // namespace atrip