Compare commits
33 Commits
6143d1ae73
...
cuda
| Author | SHA1 | Date | |
|---|---|---|---|
| 122329eca7 | |||
|
|
58c0bf078e | ||
| 3fe15e5e5c | |||
| 0d223e6ed9 | |||
| c8bdc4239f | |||
|
|
be96e4bf8c | ||
|
|
9003c218a3 | ||
|
|
4af47a0bb7 | ||
|
|
9a5a2487be | ||
| c4ec227185 | |||
| 1ceb4cf0d6 | |||
| 34a4e79db0 | |||
| 249f1c0b51 | |||
| 1d96800d45 | |||
| 9087e3af19 | |||
| 418fd9d389 | |||
| 895cd02778 | |||
| 8efa3d911e | |||
| 0fa24404e5 | |||
| 8f7d05efda | |||
| ad542fe856 | |||
| 658397ebd7 | |||
| 26e2f2d109 | |||
| 871471aae3 | |||
| 65a64f3f8c | |||
| 4f9f09e965 | |||
| 6dc943e10a | |||
| ed347ab0d9 | |||
| 8c5c47e208 | |||
| 6871372cac | |||
| 452c0fe001 | |||
| b636b89a64 | |||
| e59d298a01 |
@@ -13,7 +13,9 @@
|
||||
(format "%s/include/" root)
|
||||
(format "%s/" root)
|
||||
(format "%s/bench/" root)
|
||||
(format "%s/build/main/" root)))))
|
||||
(format "%s/build/main/" root)))
|
||||
(setq-local flycheck-clang-include-path
|
||||
flycheck-gcc-include-path)))
|
||||
(eval . (flycheck-mode))
|
||||
(eval . (outline-minor-mode))
|
||||
(indent-tabs-mode . nil)
|
||||
|
||||
107
README.org
107
README.org
@@ -26,3 +26,110 @@ before the proper paper is released please contact me.
|
||||
|
||||
In the mean time the code has been used in
|
||||
[[https://aip.scitation.org/doi/10.1063/5.0074936][this publication]] and can therefore been cited.
|
||||
|
||||
* Building
|
||||
|
||||
Atrip uses autotools to build the system.
|
||||
Autotools works by first creating a =configure= script from
|
||||
a =configure.ac= file.
|
||||
|
||||
Atrip should be built out of source, this means that
|
||||
you have to create a build directory other that the root
|
||||
directory, for instance in the =build/tutorial= directory
|
||||
|
||||
#+begin_src sh :exports code
|
||||
mkdir -p build/tutorial/
|
||||
cd build/tutorial
|
||||
#+end_src
|
||||
|
||||
First you have to build the =configure= script by doing
|
||||
|
||||
#+begin_src sh :dir build/tutorial :exports code :results raw drawer
|
||||
../../bootstrap.sh
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
:results:
|
||||
|
||||
Creating configure script
|
||||
|
||||
|
||||
Now you can build by doing
|
||||
|
||||
mkdir build
|
||||
cd build
|
||||
../configure
|
||||
make extern
|
||||
make all
|
||||
|
||||
:end:
|
||||
|
||||
And then you can see the =configure= options
|
||||
#+begin_src sh :dir build/tutorial :results raw drawer :eval no
|
||||
../../configure --help
|
||||
#+end_src
|
||||
|
||||
** Benches
|
||||
|
||||
The script =tools/configure-benches.sh= can be used to create
|
||||
a couple of configurations for benches:
|
||||
|
||||
#+begin_src sh :exports results :results verbatim org :results verbatim drawer replace output
|
||||
awk '/begin +doc/,/end +doc/ { print $NL }' tools/configure-benches.sh |
|
||||
grep -v -e "begin \+doc" -e "end \+doc" |
|
||||
sed "s/^# //; s/^# *$//; /^$/d"
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
:results:
|
||||
- default ::
|
||||
This configuration uses a CPU code with dgemm
|
||||
and without computing slices.
|
||||
- only-dgemm ::
|
||||
This only runs the computation part that involves dgemms.
|
||||
- cuda-only-dgemm ::
|
||||
This is the naive CUDA implementation compiling only the dgemm parts
|
||||
of the compute.
|
||||
- cuda-slices-on-gpu-only-dgemm ::
|
||||
This configuration tests that slices reside completely on the gpu
|
||||
and it should use a CUDA aware MPI implementation.
|
||||
It also only uses the routines that involve dgemm.
|
||||
:end:
|
||||
|
||||
In order to generate the benches just create a suitable directory for it
|
||||
|
||||
#+begin_src sh :eval no
|
||||
mkdir -p build/benches
|
||||
cd buid/benches
|
||||
../../tools/configure-benches.sh CXX=g++ ...
|
||||
#+end_src
|
||||
|
||||
and you will get a Makefile together with several project folders.
|
||||
You can either configure all projects with =make all= or
|
||||
then go in each folder.
|
||||
|
||||
Notice that you can give a path for ctf for all of them by doing
|
||||
#+begin_src sh :eval no
|
||||
../../tools/configure-benches.sh --with-ctf=/absolute/path/to/ctf
|
||||
#+end_src
|
||||
|
||||
* Running benches
|
||||
|
||||
** Main benchmark
|
||||
|
||||
The main benchmark gets built in =bench/atrip= and is used to run an
|
||||
atrip run with random tensors.
|
||||
|
||||
A common run of this script will be the following
|
||||
|
||||
#+begin_src sh
|
||||
bench/atrip \
|
||||
--no 100 \
|
||||
--nv 1000 \
|
||||
--mod 1 \
|
||||
--% 0 \
|
||||
--dist group \
|
||||
--nocheckpoint \
|
||||
--max-iterations 1000
|
||||
#+end_src
|
||||
|
||||
|
||||
@@ -19,7 +19,7 @@ BENCHES_LDADD = $(ATRIP_LIB) $(ATRIP_CTF)
|
||||
## main entry point and bench
|
||||
##
|
||||
bin_PROGRAMS += atrip
|
||||
atrip_SOURCES = test_main.cxx
|
||||
atrip_SOURCES = main.cxx
|
||||
atrip_CPPFLAGS = $(AM_CPPFLAGS)
|
||||
atrip_LDADD = $(BENCHES_LDADD)
|
||||
|
||||
|
||||
@@ -5,18 +5,20 @@
|
||||
#include <CLI11.hpp>
|
||||
|
||||
#define _print_size(what, size) \
|
||||
if (rank == 0) { \
|
||||
std::cout << #what \
|
||||
<< " => " \
|
||||
<< (double)size * elem_to_gb \
|
||||
<< "GB" \
|
||||
<< std::endl; \
|
||||
}
|
||||
do { \
|
||||
if (rank == 0) { \
|
||||
std::cout << #what \
|
||||
<< " => " \
|
||||
<< (double)size * elem_to_gb \
|
||||
<< "GB" \
|
||||
<< std::endl; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
MPI_Init(&argc, &argv);
|
||||
|
||||
size_t checkpoint_it;
|
||||
size_t checkpoint_it, max_iterations;
|
||||
int no(10), nv(100), itMod(-1), percentageMod(10);
|
||||
float checkpoint_percentage;
|
||||
bool
|
||||
@@ -30,6 +32,9 @@ int main(int argc, char** argv) {
|
||||
app.add_option("--no", no, "Occupied orbitals");
|
||||
app.add_option("--nv", nv, "Virtual orbitals");
|
||||
app.add_option("--mod", itMod, "Iteration modifier");
|
||||
app.add_option("--max-iterations",
|
||||
max_iterations,
|
||||
"Maximum number of iterations to run");
|
||||
app.add_flag("--keep-vppph", keepVppph, "Do not delete Vppph");
|
||||
app.add_flag("--nochrono", nochrono, "Do not print chrono");
|
||||
app.add_flag("--rank-round-robin", rankRoundRobin, "Do rank round robin");
|
||||
@@ -45,14 +50,27 @@ int main(int argc, char** argv) {
|
||||
checkpoint_percentage,
|
||||
"Percentage for checkpoints");
|
||||
|
||||
// Optional tensor files
|
||||
std::string
|
||||
ei_path, ea_path,
|
||||
Tph_path, Tpphh_path,
|
||||
Vpphh_path, Vhhhp_path, Vppph_path;
|
||||
app.add_option("--ei", ei_path, "Path for ei");
|
||||
app.add_option("--ea", ea_path, "Path for ea");
|
||||
app.add_option("--Tpphh", Tpphh_path, "Path for Tpphh");
|
||||
app.add_option("--Tph", Tph_path, "Path for Tph");
|
||||
app.add_option("--Vpphh", Vpphh_path, "Path for Vpphh");
|
||||
app.add_option("--Vhhhp", Vhhhp_path, "Path for Vhhhp");
|
||||
app.add_option("--Vppph", Vppph_path, "Path for Vppph");
|
||||
|
||||
#if defined(HAVE_CUDA)
|
||||
size_t ooo_threads = 0, ooo_blocks = 0;
|
||||
app.add_option("--ooo-blocks",
|
||||
ooo_blocks,
|
||||
"CUDA: Number of blocks per block for kernels going through ooo tensors");
|
||||
ooo_blocks,
|
||||
"CUDA: Number of blocks per block for kernels going through ooo tensors");
|
||||
app.add_option("--ooo-threads",
|
||||
ooo_threads,
|
||||
"CUDA: Number of threads per block for kernels going through ooo tensors");
|
||||
ooo_threads,
|
||||
"CUDA: Number of threads per block for kernels going through ooo tensors");
|
||||
#endif
|
||||
|
||||
CLI11_PARSE(app, argc, argv);
|
||||
@@ -148,37 +166,64 @@ int main(int argc, char** argv) {
|
||||
}
|
||||
|
||||
|
||||
std::vector<int> symmetries(4, NS)
|
||||
, vo({nv, no})
|
||||
, vvoo({nv, nv, no, no})
|
||||
, ooov({no, no, no, nv})
|
||||
, vvvo({nv, nv, nv, no})
|
||||
;
|
||||
std::vector<int>
|
||||
symmetries(4, NS),
|
||||
vo({nv, no}),
|
||||
vvoo({nv, nv, no, no}),
|
||||
ooov({no, no, no, nv}),
|
||||
vvvo({nv, nv, nv, no});
|
||||
|
||||
CTF::Tensor<double>
|
||||
ei(1, ooov.data(), symmetries.data(), world)
|
||||
, ea(1, vo.data(), symmetries.data(), world)
|
||||
, Tph(2, vo.data(), symmetries.data(), world)
|
||||
, Tpphh(4, vvoo.data(), symmetries.data(), world)
|
||||
, Vpphh(4, vvoo.data(), symmetries.data(), world)
|
||||
, Vhhhp(4, ooov.data(), symmetries.data(), world)
|
||||
;
|
||||
ei(1, ooov.data(), symmetries.data(), world),
|
||||
ea(1, vo.data(), symmetries.data(), world),
|
||||
Tph(2, vo.data(), symmetries.data(), world),
|
||||
Tpphh(4, vvoo.data(), symmetries.data(), world),
|
||||
Vpphh(4, vvoo.data(), symmetries.data(), world),
|
||||
Vhhhp(4, ooov.data(), symmetries.data(), world);
|
||||
|
||||
// initialize deletable tensors in heap
|
||||
auto Vppph
|
||||
= new CTF::Tensor<double>(4, vvvo.data(), symmetries.data(), world);
|
||||
|
||||
_print_size(Vabci, no*nv*nv*nv)
|
||||
_print_size(Vabij, no*no*nv*nv)
|
||||
_print_size(Vijka, no*no*no*nv)
|
||||
_print_size(Vabci, no*nv*nv*nv);
|
||||
_print_size(Vabij, no*no*nv*nv);
|
||||
_print_size(Vijka, no*no*no*nv);
|
||||
|
||||
ei.fill_random(-40.0, -2);
|
||||
ea.fill_random(2, 50);
|
||||
Tpphh.fill_random(0, 1);
|
||||
Tph.fill_random(0, 1);
|
||||
Vpphh.fill_random(0, 1);
|
||||
Vhhhp.fill_random(0, 1);
|
||||
Vppph->fill_random(0, 1);
|
||||
if (ei_path.size()) {
|
||||
ei.read_dense_from_file(ei_path.c_str());
|
||||
} else {
|
||||
ei.fill_random(-40.0, -2);
|
||||
}
|
||||
if (ea_path.size()) {
|
||||
ea.read_dense_from_file(ea_path.c_str());
|
||||
} else {
|
||||
ea.fill_random(2, 50);
|
||||
}
|
||||
if (Tpphh_path.size()) {
|
||||
Tpphh.read_dense_from_file(Tpphh_path.c_str());
|
||||
} else {
|
||||
Tpphh.fill_random(0, 1);
|
||||
}
|
||||
if (Tph_path.size()) {
|
||||
Tph.read_dense_from_file(Tph_path.c_str());
|
||||
} else {
|
||||
Tph.fill_random(0, 1);
|
||||
}
|
||||
if (Vpphh_path.size()) {
|
||||
Vpphh.read_dense_from_file(Vpphh_path.c_str());
|
||||
} else {
|
||||
Vpphh.fill_random(0, 1);
|
||||
}
|
||||
if (Vhhhp_path.size()) {
|
||||
Vhhhp.read_dense_from_file(Vhhhp_path.c_str());
|
||||
} else {
|
||||
Vhhhp.fill_random(0, 1);
|
||||
}
|
||||
if (Vppph_path.size()) {
|
||||
Vppph->read_dense_from_file(Vppph_path.c_str());
|
||||
} else {
|
||||
Vppph->fill_random(0, 1);
|
||||
}
|
||||
|
||||
atrip::Atrip::init(MPI_COMM_WORLD);
|
||||
const auto in
|
||||
@@ -199,6 +244,7 @@ int main(int argc, char** argv) {
|
||||
.with_iterationMod(itMod)
|
||||
.with_percentageMod(percentageMod)
|
||||
.with_tuplesDistribution(tuplesDistribution)
|
||||
.with_maxIterations(max_iterations)
|
||||
// checkpoint options
|
||||
.with_checkpointAtEveryIteration(checkpoint_it)
|
||||
.with_checkpointAtPercentage(checkpoint_percentage)
|
||||
69
configure.ac
69
configure.ac
@@ -21,26 +21,6 @@ AC_ARG_ENABLE(shared,
|
||||
files (default=YES)]),
|
||||
[], [enable_shared=yes])
|
||||
|
||||
AC_ARG_ENABLE(
|
||||
[slice],
|
||||
[AS_HELP_STRING(
|
||||
[--disable-slice],
|
||||
[Disable the step of slicing tensors for CTF, this is useful for example for benchmarking or testing.])],
|
||||
[atrip_dont_slice=1
|
||||
AC_DEFINE([ATRIP_DONT_SLICE],1,[Wether CTF will slice tensors or skip the step])
|
||||
],
|
||||
[atrip_dont_slice=0]
|
||||
)
|
||||
|
||||
AC_ARG_ENABLE(
|
||||
[atrip_dgemm],
|
||||
[AS_HELP_STRING(
|
||||
[--disable-dgemm],
|
||||
[Disable using dgemm for the doubles equations])],
|
||||
[],
|
||||
[AC_DEFINE([ATRIP_USE_DGEMM],1,[Use dgemm for the doubles equations])]
|
||||
)
|
||||
|
||||
|
||||
AC_ARG_ENABLE([docs],
|
||||
[AS_HELP_STRING([--enable-docs],
|
||||
@@ -74,13 +54,53 @@ AC_ARG_VAR([NVCC], [Path to the nvidia cuda compiler.])
|
||||
AC_ARG_VAR([CUDA_LDFLAGS], [LDFLAGS to find libraries -lcuda, -lcudart, -lcublas.])
|
||||
AC_ARG_VAR([CUDA_CXXFLAGS], [CXXFLAGS to find the CUDA headers])
|
||||
|
||||
dnl -----------------------------------------------------------------------
|
||||
dnl ATRIP CPP DEFINES
|
||||
dnl -----------------------------------------------------------------------
|
||||
|
||||
AC_ARG_WITH([atrip-debug],
|
||||
[AS_HELP_STRING([--with-atrip-debug],
|
||||
[Debug level for atrip, possible values: 1, 2, 3, 4])],
|
||||
[Debug level for atrip, possible values:
|
||||
1, 2, 3, 4])],
|
||||
[AC_DEFINE([ATRIP_DEBUG],[atrip-debug],[Atrip debug level])],
|
||||
[AC_DEFINE([ATRIP_DEBUG],[1],[Atrip debug level])]
|
||||
)
|
||||
[AC_DEFINE([ATRIP_DEBUG],[1],[Atrip debug level])])
|
||||
|
||||
|
||||
AC_ARG_ENABLE([atrip_dgemm],
|
||||
[AS_HELP_STRING([--disable-dgemm],
|
||||
[Disable using dgemm for the doubles equations])],
|
||||
[],
|
||||
[AC_DEFINE([ATRIP_USE_DGEMM],
|
||||
1,
|
||||
[Use dgemm for the doubles equations])])
|
||||
|
||||
ATRIP_DEF([slice], [disable],
|
||||
[ATRIP_DONT_SLICE],
|
||||
[Disable the step of slicing tensors for CTF, this is useful
|
||||
for example for benchmarking or testing.])
|
||||
|
||||
ATRIP_DEF([only-dgemm], [enable],
|
||||
[ATRIP_ONLY_DGEMM],
|
||||
[Run only the parts of atrip that involve dgemm calls, this
|
||||
is useful for benchmarking and testing the code, it is
|
||||
intended for developers of Atrip.])
|
||||
|
||||
ATRIP_DEF([naive-slow], [enable],
|
||||
[ATRIP_NAIVE_SLOW],
|
||||
[Run slow but correct code for the mapping of (iteration,
|
||||
rank) to tuple of the naive tuple distribution.])
|
||||
|
||||
ATRIP_DEF([sources-in-gpu], [enable],
|
||||
[ATRIP_SOURCES_IN_GPU],
|
||||
[When using CUDA, activate storing all sources (slices of
|
||||
the input tensors) in the GPU. This means that a lot of GPUs
|
||||
will be needed.])
|
||||
|
||||
ATRIP_DEF([cuda-aware-mpi], [enable],
|
||||
[ATRIP_CUDA_AWARE_MPI],
|
||||
[When using MPI, assume support for CUDA aware mpi by the
|
||||
given MPI implementation.])
|
||||
|
||||
|
||||
dnl -----------------------------------------------------------------------
|
||||
|
||||
@@ -144,8 +164,7 @@ AC_TYPE_SIZE_T
|
||||
dnl -----------------------------------------------------------------------
|
||||
dnl CHECK CTF
|
||||
if test xYES = x${BUILD_CTF}; then
|
||||
AC_MSG_WARN([Sorry, building CTF not supported yet provide a build path
|
||||
with --with-ctf=path/to/ctf/installation])
|
||||
AC_MSG_WARN([You will have to do make ctf before building the project.])
|
||||
else
|
||||
CPPFLAGS="$CPPFLAGS -I${LIBCTF_CPATH}"
|
||||
LDFLAGS="$LDFLAGS -L${LIBCTF_LD_LIBRARY_PATH} -lctf"
|
||||
|
||||
56
etc/env/raven/cuda
vendored
Normal file
56
etc/env/raven/cuda
vendored
Normal file
@@ -0,0 +1,56 @@
|
||||
mods=(
|
||||
cuda/11.6
|
||||
intel/19.1.2
|
||||
mkl/2020.4
|
||||
impi/2019.8
|
||||
autoconf/2.69
|
||||
automake/1.15
|
||||
libtool/2.4.6
|
||||
)
|
||||
|
||||
|
||||
module purge
|
||||
module load ${mods[@]}
|
||||
LIB_PATH="${CUDA_HOME}/lib64"
|
||||
export CUDA_ROOT=${CUDA_HOME}
|
||||
export CUDA_LDFLAGS="-L${LIB_PATH} -lcuda -L${LIB_PATH} -lcudart -L${LIB_PATH} -lcublas"
|
||||
export CUDA_CXXFLAGS="-I${CUDA_HOME}/include"
|
||||
|
||||
export LD_LIBRARY_PATH="${MKL_HOME}/lib/intel64_lin:${LD_LIBRARY_PATH}"
|
||||
|
||||
BLAS_STATIC_PATH="$MKL_HOME/lib/intel64/libmkl_intel_lp64.a"
|
||||
|
||||
ls ${LIB_PATH}/libcublas.so
|
||||
ls ${LIB_PATH}/libcudart.so
|
||||
|
||||
cat <<EOF
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
info
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
MKL_HOME = $MKL_HOME
|
||||
BLAS_STATIC_PATH = $BLAS_STATIC_PATH
|
||||
|
||||
CUDA_ROOT = ${CUDA_HOME}
|
||||
CUDA_LDFLAGS = "-L${LIB_PATH} -lcuda -L${LIB_PATH} -lcudart -L${LIB_PATH} -lcublas"
|
||||
CUDA_CXXFLAGS = "-I${CUDA_HOME}/include"
|
||||
|
||||
|
||||
|
||||
Consider now runnng the following
|
||||
|
||||
../configure \\
|
||||
--enable-cuda \\
|
||||
--disable-slice \\
|
||||
--with-blas="-L\$MKL_HOME/lib/intel64/ -lmkl_intel_lp64 -mkl" \\
|
||||
CXX=mpiicpc \\
|
||||
CC=mpiicc \\
|
||||
MPICXX=mpiicpc
|
||||
|
||||
|
||||
EOF
|
||||
|
||||
|
||||
return
|
||||
8
etc/m4/atrip-def.m4
Normal file
8
etc/m4/atrip-def.m4
Normal file
@@ -0,0 +1,8 @@
|
||||
AC_DEFUN([ATRIP_DEF],
|
||||
[AC_ARG_ENABLE([$1],
|
||||
[AS_HELP_STRING([--$2-$1],
|
||||
[$4])],
|
||||
[AC_DEFINE([$3],
|
||||
1,
|
||||
[$4])])])
|
||||
|
||||
@@ -86,7 +86,7 @@ namespace atrip {
|
||||
ADD_ATTRIBUTE(bool, rankRoundRobin, false)
|
||||
ADD_ATTRIBUTE(bool, chrono, false)
|
||||
ADD_ATTRIBUTE(bool, barrier, false)
|
||||
ADD_ATTRIBUTE(int, maxIterations, 0)
|
||||
ADD_ATTRIBUTE(size_t, maxIterations, 0)
|
||||
ADD_ATTRIBUTE(int, iterationMod, -1)
|
||||
ADD_ATTRIBUTE(int, percentageMod, -1)
|
||||
ADD_ATTRIBUTE(TuplesDistribution, tuplesDistribution, NAIVE)
|
||||
|
||||
@@ -11,11 +11,22 @@
|
||||
#if defined(HAVE_CUDA) && defined(__CUDACC__)
|
||||
# define __MAYBE_GLOBAL__ __global__
|
||||
# define __MAYBE_DEVICE__ __device__
|
||||
# define __MAYBE_HOST__ __host__
|
||||
# define __INLINE__ __inline__
|
||||
#else
|
||||
# define __MAYBE_GLOBAL__
|
||||
# define __MAYBE_DEVICE__
|
||||
# define __MAYBE_HOST__
|
||||
# define __INLINE__ inline
|
||||
#endif
|
||||
|
||||
#if defined(HAVE_CUDA)
|
||||
#define ACC_FUNCALL(fname, i, j, ...) fname<<<(i), (j)>>>(__VA_ARGS__)
|
||||
#else
|
||||
#define ACC_FUNCALL(fname, i, j, ...) fname(__VA_ARGS__)
|
||||
#endif /* defined(HAVE_CUDA) */
|
||||
|
||||
|
||||
#define _CHECK_CUDA_SUCCESS(message, ...) \
|
||||
do { \
|
||||
CUresult result = __VA_ARGS__; \
|
||||
|
||||
@@ -23,6 +23,8 @@
|
||||
#include<thrust/device_vector.h>
|
||||
#endif
|
||||
|
||||
#include<atrip/CUDA.hpp>
|
||||
|
||||
|
||||
namespace atrip {
|
||||
using ABCTuple = std::array<size_t, 3>;
|
||||
@@ -32,21 +34,25 @@ using ABCTuples = std::vector<ABCTuple>;
|
||||
|
||||
// [[file:~/cuda/atrip/atrip.org::*Energy][Energy:1]]
|
||||
template <typename F=double>
|
||||
double getEnergyDistinct
|
||||
__MAYBE_GLOBAL__
|
||||
void getEnergyDistinct
|
||||
( F const epsabc
|
||||
, size_t const No
|
||||
, F* const epsi
|
||||
, F* const Tijk
|
||||
, F* const Zijk
|
||||
, double* energy
|
||||
);
|
||||
|
||||
template <typename F=double>
|
||||
double getEnergySame
|
||||
__MAYBE_GLOBAL__
|
||||
void getEnergySame
|
||||
( F const epsabc
|
||||
, size_t const No
|
||||
, F* const epsi
|
||||
, F* const Tijk
|
||||
, F* const Zijk
|
||||
, double* energy
|
||||
);
|
||||
// Energy:1 ends here
|
||||
|
||||
@@ -97,6 +103,11 @@ void singlesContribution
|
||||
// -- TIJK
|
||||
// , DataPtr<F> Tijk
|
||||
, DataFieldType<F>* Tijk_
|
||||
#if defined(HAVE_CUDA)
|
||||
// -- tmp buffers
|
||||
, DataFieldType<F>* _t_buffer
|
||||
, DataFieldType<F>* _vhhh
|
||||
#endif
|
||||
);
|
||||
// Doubles contribution:1 ends here
|
||||
|
||||
|
||||
171
include/atrip/Operations.hpp
Normal file
171
include/atrip/Operations.hpp
Normal file
@@ -0,0 +1,171 @@
|
||||
// Copyright 2022 Alejandro Gallo
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef OPERATIONS_HPP_
|
||||
#define OPERATIONS_HPP_
|
||||
|
||||
#include <atrip/CUDA.hpp>
|
||||
#include <atrip/Types.hpp>
|
||||
#include <atrip/Complex.hpp>
|
||||
|
||||
namespace atrip {
|
||||
namespace acc {
|
||||
|
||||
// cuda kernels
|
||||
|
||||
template <typename F>
|
||||
__MAYBE_GLOBAL__
|
||||
void zeroing(F* a, size_t n) {
|
||||
F zero = {0};
|
||||
for (size_t i = 0; i < n; i++) {
|
||||
a[i] = zero;
|
||||
}
|
||||
}
|
||||
|
||||
////
|
||||
template <typename F>
|
||||
__MAYBE_DEVICE__ __MAYBE_HOST__ __INLINE__
|
||||
F maybeConjugateScalar(const F &a) { return a; }
|
||||
|
||||
#if defined(HAVE_CUDA)
|
||||
template <>
|
||||
__MAYBE_DEVICE__ __MAYBE_HOST__ __INLINE__
|
||||
cuDoubleComplex maybeConjugateScalar(const cuDoubleComplex &a) {
|
||||
return {a.x, -a.y};
|
||||
}
|
||||
#endif /* defined(HAVE_CUDA) */
|
||||
|
||||
template <typename F>
|
||||
__MAYBE_GLOBAL__
|
||||
void maybeConjugate(F* to, F* from, size_t n) {
|
||||
for (size_t i = 0; i < n; ++i) {
|
||||
to[i] = maybeConjugateScalar<F>(from[i]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename F>
|
||||
__MAYBE_DEVICE__ __MAYBE_HOST__
|
||||
void reorder(F* to, F* from, size_t size, size_t I, size_t J, size_t K) {
|
||||
size_t idx = 0;
|
||||
const size_t IDX = I + J*size + K*size*size;
|
||||
for (size_t k = 0; k < size; k++)
|
||||
for (size_t j = 0; j < size; j++)
|
||||
for (size_t i = 0; i < size; i++, idx++)
|
||||
to[idx] += from[IDX];
|
||||
}
|
||||
|
||||
// Multiplication operation
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <typename F>
|
||||
__MAYBE_DEVICE__ __MAYBE_HOST__ __INLINE__
|
||||
F prod(const F &a, const F &b) { return a * b; }
|
||||
|
||||
#if defined(HAVE_CUDA)
|
||||
template <>
|
||||
__MAYBE_DEVICE__ __MAYBE_HOST__ __INLINE__
|
||||
cuDoubleComplex prod(const cuDoubleComplex &a, const cuDoubleComplex &b) {
|
||||
return cuCmul(a, b);
|
||||
}
|
||||
#endif /* defined(HAVE_CUDA) */
|
||||
|
||||
// Division operation
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <typename F>
|
||||
__MAYBE_DEVICE__ __MAYBE_HOST__ __INLINE__
|
||||
F div(const F &a, const F &b) { return a / b; }
|
||||
|
||||
#if defined(HAVE_CUDA)
|
||||
template <>
|
||||
__MAYBE_DEVICE__ __MAYBE_HOST__ __INLINE__
|
||||
cuDoubleComplex div(const cuDoubleComplex &a, const cuDoubleComplex &b) {
|
||||
return cuCdiv(a, b);
|
||||
}
|
||||
#endif /* defined(HAVE_CUDA) */
|
||||
|
||||
// Real part
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <typename F>
|
||||
__MAYBE_HOST__ __INLINE__
|
||||
double real(F &a) { return std::real(a); }
|
||||
|
||||
template <>
|
||||
__MAYBE_DEVICE__ __MAYBE_HOST__ __INLINE__
|
||||
double real(double &a) {
|
||||
return a;
|
||||
}
|
||||
|
||||
#if defined(HAVE_CUDA)
|
||||
template <>
|
||||
__MAYBE_DEVICE__ __MAYBE_HOST__ __INLINE__
|
||||
double real(cuDoubleComplex &a) {
|
||||
return cuCreal(a);
|
||||
}
|
||||
#endif /* defined(HAVE_CUDA) */
|
||||
|
||||
// Substraction operator
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <typename F>
|
||||
__MAYBE_DEVICE__ __MAYBE_HOST__ __INLINE__
|
||||
F sub(const F &a, const F &b) { return a - b; }
|
||||
|
||||
#if defined(HAVE_CUDA)
|
||||
template <>
|
||||
__MAYBE_DEVICE__ __MAYBE_HOST__ __INLINE__
|
||||
cuDoubleComplex sub(const cuDoubleComplex &a,
|
||||
const cuDoubleComplex &b) {
|
||||
return cuCsub(a, b);
|
||||
}
|
||||
#endif /* defined(HAVE_CUDA) */
|
||||
|
||||
// Addition operator
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <typename F>
|
||||
__MAYBE_DEVICE__ __MAYBE_HOST__ __INLINE__
|
||||
F add(const F &a, const F &b) { return a + b; }
|
||||
|
||||
#if defined(HAVE_CUDA)
|
||||
template <>
|
||||
__MAYBE_DEVICE__ __MAYBE_HOST__ __INLINE__
|
||||
cuDoubleComplex add(const cuDoubleComplex &a, const cuDoubleComplex &b) {
|
||||
return cuCadd(a, b);
|
||||
}
|
||||
#endif /* defined(HAVE_CUDA) */
|
||||
|
||||
// Sum in place operator
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <typename F>
|
||||
__MAYBE_DEVICE__ __MAYBE_HOST__
|
||||
void sum_in_place(F* to, const F* from) { *to += *from; }
|
||||
|
||||
#if defined(HAVE_CUDA)
|
||||
template <>
|
||||
__MAYBE_DEVICE__ __MAYBE_HOST__
|
||||
void sum_in_place(cuDoubleComplex* to, const cuDoubleComplex* from) {
|
||||
to->x += from->x;
|
||||
to->y += from->y;
|
||||
}
|
||||
#endif /* defined(HAVE_CUDA) */
|
||||
|
||||
|
||||
} // namespace acc
|
||||
} // namespace atrip
|
||||
|
||||
#endif
|
||||
@@ -352,7 +352,7 @@ Info info;
|
||||
|
||||
// [[file:~/cuda/atrip/atrip.org::*Attributes][Attributes:2]]
|
||||
DataPtr<F> data;
|
||||
#if defined(HAVE_CUDA)
|
||||
#if defined(HAVE_CUDA) && !defined (ATRIP_SOURCES_IN_GPU)
|
||||
F* mpi_data;
|
||||
#endif
|
||||
// Attributes:2 ends here
|
||||
@@ -456,7 +456,7 @@ void unwrapAndMarkReady() {
|
||||
if (errorCode != MPI_SUCCESS)
|
||||
throw "Atrip: Unexpected error MPI ERROR";
|
||||
|
||||
#if defined(HAVE_CUDA)
|
||||
#if defined(HAVE_CUDA) && !defined(ATRIP_SOURCES_IN_GPU)
|
||||
// copy the retrieved mpi data to the device
|
||||
WITH_CHRONO("cuda:memcpy",
|
||||
_CHECK_CUDA_SUCCESS("copying mpi data to device",
|
||||
@@ -488,7 +488,7 @@ void unwrapAndMarkReady() {
|
||||
Slice(size_t size_)
|
||||
: info({})
|
||||
, data(DataNullPtr)
|
||||
#if defined(HAVE_CUDA)
|
||||
#if defined(HAVE_CUDA) && !defined(ATRIP_SOURCES_IN_GPU)
|
||||
, mpi_data(nullptr)
|
||||
#endif
|
||||
, size(size_)
|
||||
|
||||
@@ -18,6 +18,12 @@
|
||||
#include <atrip/Slice.hpp>
|
||||
#include <atrip/RankMap.hpp>
|
||||
|
||||
#if defined(ATRIP_SOURCES_IN_GPU)
|
||||
# define SOURCES_DATA(s) (s)
|
||||
#else
|
||||
# define SOURCES_DATA(s) (s).data()
|
||||
#endif
|
||||
|
||||
namespace atrip {
|
||||
// Prolog:1 ends here
|
||||
|
||||
@@ -195,7 +201,7 @@ template <typename F=double>
|
||||
;
|
||||
if (blank.info.state == Slice<F>::SelfSufficient) {
|
||||
#if defined(HAVE_CUDA)
|
||||
const size_t _size = sizeof(F) * sources[from.source].size();
|
||||
const size_t _size = sizeof(F) * sliceSize;
|
||||
// TODO: this is code duplication with downstairs
|
||||
if (freePointers.size() == 0) {
|
||||
std::stringstream stream;
|
||||
@@ -212,12 +218,12 @@ template <typename F=double>
|
||||
WITH_CHRONO("cuda:memcpy:self-sufficient",
|
||||
_CHECK_CUDA_SUCCESS("copying mpi data to device",
|
||||
cuMemcpyHtoD(blank.data,
|
||||
(void*)sources[from.source].data(),
|
||||
sizeof(F) * sources[from.source].size()));
|
||||
(void*)SOURCES_DATA(sources[from.source]),
|
||||
sizeof(F) * sliceSize));
|
||||
))
|
||||
|
||||
#else
|
||||
blank.data = sources[from.source].data();
|
||||
blank.data = SOURCES_DATA(sources[from.source]);
|
||||
#endif
|
||||
} else {
|
||||
if (freePointers.size() == 0) {
|
||||
@@ -396,23 +402,44 @@ template <typename F=double>
|
||||
, world(child_world)
|
||||
, universe(global_world)
|
||||
, sliceLength(sliceLength_)
|
||||
, sliceSize(std::accumulate(sliceLength.begin(),
|
||||
sliceLength.end(),
|
||||
1UL, std::multiplies<size_t>()))
|
||||
|
||||
#if defined(ATRIP_SOURCES_IN_GPU)
|
||||
, sources(rankMap.nSources())
|
||||
#else
|
||||
, sources(rankMap.nSources(),
|
||||
std::vector<F>
|
||||
(std::accumulate(sliceLength.begin(),
|
||||
sliceLength.end(),
|
||||
1UL, std::multiplies<size_t>())))
|
||||
std::vector<F>(sliceSize))
|
||||
#endif
|
||||
, name(name_)
|
||||
, sliceTypes(sliceTypes_)
|
||||
, sliceBuffers(nSliceBuffers)
|
||||
//, slices(2 * sliceTypes.size(), Slice<F>{ sources[0].size() })
|
||||
{ // constructor begin
|
||||
|
||||
LOG(0,"Atrip") << "INIT SliceUnion: " << name << "\n";
|
||||
printf("sliceSize %d, number of slices %d\n\n\n", sliceSize, sources.size());
|
||||
|
||||
#if defined(ATRIP_SOURCES_IN_GPU)
|
||||
for (auto& ptr: sources) {
|
||||
const CUresult sourceError =
|
||||
cuMemAlloc(&ptr, sizeof(F) * sliceSize);
|
||||
if (ptr == 0UL) {
|
||||
throw "UNSUFICCIENT MEMORY ON THE GRAPHIC CARD FOR SOURCES";
|
||||
}
|
||||
if (sourceError != CUDA_SUCCESS) {
|
||||
std::stringstream s;
|
||||
s << "Error allocating memory for sources "
|
||||
<< "code " << sourceError << "\n";
|
||||
throw s.str();
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
for (auto& ptr: sliceBuffers) {
|
||||
#if defined(HAVE_CUDA)
|
||||
const CUresult error =
|
||||
cuMemAlloc(&ptr, sizeof(F) * sources[0].size());
|
||||
cuMemAlloc(&ptr, sizeof(F) * sliceSize);
|
||||
if (ptr == 0UL) {
|
||||
throw "UNSUFICCIENT MEMORY ON THE GRAPHIC CARD FOR FREE POINTERS";
|
||||
}
|
||||
@@ -423,12 +450,12 @@ template <typename F=double>
|
||||
throw s.str();
|
||||
}
|
||||
#else
|
||||
ptr = (DataPtr<F>)malloc(sizeof(F) * sources[0].size());
|
||||
ptr = (DataPtr<F>)malloc(sizeof(F) * sliceSize);
|
||||
#endif
|
||||
}
|
||||
|
||||
slices
|
||||
= std::vector<Slice<F>>(2 * sliceTypes.size(), { sources[0].size() });
|
||||
= std::vector<Slice<F>>(2 * sliceTypes.size(), { sliceSize });
|
||||
// TODO: think exactly ^------------------- about this number
|
||||
|
||||
// initialize the freePointers with the pointers to the buffers
|
||||
@@ -436,17 +463,45 @@ template <typename F=double>
|
||||
std::inserter(freePointers, freePointers.begin()),
|
||||
[](DataPtr<F> ptr) { return ptr; });
|
||||
|
||||
#if defined(HAVE_CUDA)
|
||||
LOG(1,"Atrip") << "warming communication up " << slices.size() << "\n";
|
||||
WITH_CHRONO("cuda:warmup",
|
||||
int nRanks=Atrip::np, requestCount=0;
|
||||
int nSends=sliceBuffers.size()*nRanks;
|
||||
MPI_Request *requests = (MPI_Request*) malloc(nSends*2 * sizeof(MPI_Request));
|
||||
MPI_Status *statuses = (MPI_Status*) malloc(nSends*2 * sizeof(MPI_Status));
|
||||
for (int sliceId=0; sliceId<sliceBuffers.size(); sliceId++){
|
||||
for (int rankId=0; rankId<nRanks; rankId++){
|
||||
MPI_Isend((void*)SOURCES_DATA(sources[0]),
|
||||
sliceSize,
|
||||
traits::mpi::datatypeOf<F>(),
|
||||
rankId,
|
||||
100,
|
||||
universe,
|
||||
&requests[requestCount++]);
|
||||
MPI_Irecv((void*)sliceBuffers[sliceId],
|
||||
sliceSize,
|
||||
traits::mpi::datatypeOf<F>(),
|
||||
rankId,
|
||||
100,
|
||||
universe,
|
||||
&requests[requestCount++]);
|
||||
}
|
||||
}
|
||||
MPI_Waitall(nSends*2, requests, statuses);
|
||||
)
|
||||
#endif
|
||||
|
||||
|
||||
LOG(1,"Atrip") << "#slices " << slices.size() << "\n";
|
||||
WITH_RANK << "#slices[0] " << slices[0].size << "\n";
|
||||
LOG(1,"Atrip") << "#sources " << sources.size() << "\n";
|
||||
WITH_RANK << "#sources[0] " << sources[0].size() << "\n";
|
||||
WITH_RANK << "#sources[0] " << sliceSize << "\n";
|
||||
WITH_RANK << "#freePointers " << freePointers.size() << "\n";
|
||||
LOG(1,"Atrip") << "#sliceBuffers " << sliceBuffers.size() << "\n";
|
||||
LOG(1,"Atrip") << "GB*" << np << " "
|
||||
<< double(sources.size() + sliceBuffers.size())
|
||||
* sources[0].size()
|
||||
* sliceSize
|
||||
* 8 * np
|
||||
/ 1073741824.0
|
||||
<< "\n";
|
||||
@@ -495,14 +550,13 @@ template <typename F=double>
|
||||
if (otherRank == info.from.rank) sendData_p = false;
|
||||
if (!sendData_p) return;
|
||||
|
||||
MPI_Isend( sources[info.from.source].data()
|
||||
, sources[info.from.source].size()
|
||||
, traits::mpi::datatypeOf<F>()
|
||||
, otherRank
|
||||
, tag
|
||||
, universe
|
||||
, &request
|
||||
);
|
||||
MPI_Isend((void*)SOURCES_DATA(sources[info.from.source]),
|
||||
sliceSize,
|
||||
traits::mpi::datatypeOf<F>(),
|
||||
otherRank,
|
||||
tag,
|
||||
universe,
|
||||
&request);
|
||||
WITH_CRAZY_DEBUG
|
||||
WITH_RANK << "sent to " << otherRank << "\n";
|
||||
|
||||
@@ -516,25 +570,25 @@ template <typename F=double>
|
||||
|
||||
if (Atrip::rank == info.from.rank) return;
|
||||
|
||||
if (slice.info.state == Slice<F>::Fetch) {
|
||||
if (slice.info.state == Slice<F>::Fetch) { // if-1
|
||||
// TODO: do it through the slice class
|
||||
slice.info.state = Slice<F>::Dispatched;
|
||||
#if defined(HAVE_CUDA)
|
||||
slice.mpi_data = (F*)malloc(sizeof(F) * slice.size);
|
||||
MPI_Irecv( slice.mpi_data
|
||||
#if defined(HAVE_CUDA) && defined(ATRIP_SOURCES_IN_GPU)
|
||||
# if !defined(ATRIP_CUDA_AWARE_MPI)
|
||||
# error "You need CUDA aware MPI to have slices on the GPU"
|
||||
# endif
|
||||
MPI_Irecv((void*)slice.data,
|
||||
#else
|
||||
MPI_Irecv( slice.data
|
||||
MPI_Irecv(slice.data,
|
||||
#endif
|
||||
, slice.size
|
||||
, traits::mpi::datatypeOf<F>()
|
||||
, info.from.rank
|
||||
, tag
|
||||
, universe
|
||||
, &slice.request
|
||||
//, MPI_STATUS_IGNORE
|
||||
);
|
||||
}
|
||||
}
|
||||
slice.size,
|
||||
traits::mpi::datatypeOf<F>(),
|
||||
info.from.rank,
|
||||
tag,
|
||||
universe,
|
||||
&slice.request);
|
||||
} // if-1
|
||||
} // receive
|
||||
|
||||
void unwrapAll(ABCTuple const& abc) {
|
||||
for (auto type: sliceTypes) unwrapSlice(type, abc);
|
||||
@@ -597,7 +651,12 @@ template <typename F=double>
|
||||
const MPI_Comm world;
|
||||
const MPI_Comm universe;
|
||||
const std::vector<size_t> sliceLength;
|
||||
const size_t sliceSize;
|
||||
#if defined(ATRIP_SOURCES_IN_GPU)
|
||||
std::vector< DataPtr<F> > sources;
|
||||
#else
|
||||
std::vector< std::vector<F> > sources;
|
||||
#endif
|
||||
std::vector< Slice<F> > slices;
|
||||
typename Slice<F>::Name name;
|
||||
const std::vector<typename Slice<F>::Type> sliceTypes;
|
||||
|
||||
@@ -19,8 +19,14 @@
|
||||
namespace atrip {
|
||||
|
||||
template <typename F=double>
|
||||
static
|
||||
void sliceIntoVector
|
||||
( std::vector<F> &v
|
||||
#if defined(ATRIP_SOURCES_IN_GPU)
|
||||
( DataPtr<F> &source
|
||||
#else
|
||||
( std::vector<F> &source
|
||||
#endif
|
||||
, size_t sliceSize
|
||||
, CTF::Tensor<F> &toSlice
|
||||
, std::vector<int64_t> const low
|
||||
, std::vector<int64_t> const up
|
||||
@@ -44,18 +50,30 @@ namespace atrip {
|
||||
<< "\n";
|
||||
|
||||
#ifndef ATRIP_DONT_SLICE
|
||||
toSlice.slice( toSlice_.low.data()
|
||||
, toSlice_.up.data()
|
||||
, 0.0
|
||||
, origin
|
||||
, origin_.low.data()
|
||||
, origin_.up.data()
|
||||
, 1.0);
|
||||
memcpy(v.data(), toSlice.data, sizeof(F) * v.size());
|
||||
toSlice.slice(toSlice_.low.data(),
|
||||
toSlice_.up.data(),
|
||||
0.0,
|
||||
origin,
|
||||
origin_.low.data(),
|
||||
origin_.up.data(),
|
||||
1.0);
|
||||
#else
|
||||
# pragma message("WARNING: COMPILING WITHOUT SLICING THE TENSORS")
|
||||
#endif
|
||||
|
||||
#if defined(ATRIP_SOURCES_IN_GPU)
|
||||
WITH_CHRONO("cuda:sources",
|
||||
_CHECK_CUDA_SUCCESS("copying sources data to device",
|
||||
cuMemcpyHtoD(source,
|
||||
toSlice.data,
|
||||
sliceSize));
|
||||
)
|
||||
#else
|
||||
memcpy(source.data(),
|
||||
toSlice.data,
|
||||
sizeof(F) * sliceSize);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
|
||||
@@ -80,16 +98,15 @@ namespace atrip {
|
||||
|
||||
void sliceIntoBuffer(size_t it, CTF::Tensor<F> &to, CTF::Tensor<F> const& from) override
|
||||
{
|
||||
const int Nv = this->sliceLength[0]
|
||||
, No = this->sliceLength[1]
|
||||
, a = this->rankMap.find({static_cast<size_t>(Atrip::rank), it});
|
||||
;
|
||||
|
||||
const int
|
||||
Nv = this->sliceLength[0],
|
||||
No = this->sliceLength[1],
|
||||
a = this->rankMap.find({static_cast<size_t>(Atrip::rank), it});
|
||||
|
||||
sliceIntoVector<F>( this->sources[it]
|
||||
, to, {0, 0, 0}, {Nv, No, No}
|
||||
, from, {a, 0, 0, 0}, {a+1, Nv, No, No}
|
||||
);
|
||||
sliceIntoVector<F>(this->sources[it], this->sliceSize,
|
||||
to, {0, 0, 0}, {Nv, No, No},
|
||||
from, {a, 0, 0, 0}, {a+1, Nv, No, No});
|
||||
|
||||
}
|
||||
|
||||
@@ -118,14 +135,13 @@ namespace atrip {
|
||||
void sliceIntoBuffer(size_t it, CTF::Tensor<F> &to, CTF::Tensor<F> const& from) override
|
||||
{
|
||||
|
||||
const int No = this->sliceLength[0]
|
||||
, a = this->rankMap.find({static_cast<size_t>(Atrip::rank), it})
|
||||
;
|
||||
const int
|
||||
No = this->sliceLength[0],
|
||||
a = this->rankMap.find({static_cast<size_t>(Atrip::rank), it});
|
||||
|
||||
sliceIntoVector<F>( this->sources[it]
|
||||
, to, {0, 0, 0}, {No, No, No}
|
||||
, from, {0, 0, 0, a}, {No, No, No, a+1}
|
||||
);
|
||||
sliceIntoVector<F>(this->sources[it], this->sliceSize,
|
||||
to, {0, 0, 0}, {No, No, No},
|
||||
from, {0, 0, 0, a}, {No, No, No, a+1});
|
||||
|
||||
}
|
||||
};
|
||||
@@ -153,18 +169,17 @@ namespace atrip {
|
||||
|
||||
void sliceIntoBuffer(size_t it, CTF::Tensor<F> &to, CTF::Tensor<F> const& from) override {
|
||||
|
||||
const int Nv = this->sliceLength[0]
|
||||
, No = this->sliceLength[1]
|
||||
, el = this->rankMap.find({static_cast<size_t>(Atrip::rank), it})
|
||||
, a = el % Nv
|
||||
, b = el / Nv
|
||||
;
|
||||
const int
|
||||
Nv = this->sliceLength[0],
|
||||
No = this->sliceLength[1],
|
||||
el = this->rankMap.find({static_cast<size_t>(Atrip::rank), it}),
|
||||
a = el % Nv,
|
||||
b = el / Nv;
|
||||
|
||||
|
||||
sliceIntoVector<F>( this->sources[it]
|
||||
, to, {0, 0}, {Nv, No}
|
||||
, from, {a, b, 0, 0}, {a+1, b+1, Nv, No}
|
||||
);
|
||||
sliceIntoVector<F>(this->sources[it], this->sliceSize,
|
||||
to, {0, 0}, {Nv, No},
|
||||
from, {a, b, 0, 0}, {a+1, b+1, Nv, No});
|
||||
|
||||
}
|
||||
|
||||
@@ -191,17 +206,17 @@ namespace atrip {
|
||||
|
||||
void sliceIntoBuffer(size_t it, CTF::Tensor<F> &to, CTF::Tensor<F> const& from) override {
|
||||
|
||||
const int Nv = from.lens[0]
|
||||
, No = this->sliceLength[1]
|
||||
, el = this->rankMap.find({static_cast<size_t>(Atrip::rank), it})
|
||||
, a = el % Nv
|
||||
, b = el / Nv
|
||||
;
|
||||
const int
|
||||
Nv = from.lens[0],
|
||||
No = this->sliceLength[1],
|
||||
el = this->rankMap.find({static_cast<size_t>(Atrip::rank), it}),
|
||||
a = el % Nv,
|
||||
b = el / Nv;
|
||||
|
||||
sliceIntoVector<F>( this->sources[it]
|
||||
, to, {0, 0}, {No, No}
|
||||
, from, {a, b, 0, 0}, {a+1, b+1, No, No}
|
||||
);
|
||||
|
||||
sliceIntoVector<F>(this->sources[it], this->sliceSize,
|
||||
to, {0, 0}, {No, No},
|
||||
from, {a, b, 0, 0}, {a+1, b+1, No, No});
|
||||
|
||||
|
||||
}
|
||||
@@ -231,17 +246,16 @@ namespace atrip {
|
||||
void sliceIntoBuffer(size_t it, CTF::Tensor<F> &to, CTF::Tensor<F> const& from) override {
|
||||
// TODO: maybe generalize this with ABHH
|
||||
|
||||
const int Nv = from.lens[0]
|
||||
, No = this->sliceLength[1]
|
||||
, el = this->rankMap.find({static_cast<size_t>(Atrip::rank), it})
|
||||
, a = el % Nv
|
||||
, b = el / Nv
|
||||
;
|
||||
const int
|
||||
Nv = from.lens[0],
|
||||
No = this->sliceLength[1],
|
||||
el = this->rankMap.find({static_cast<size_t>(Atrip::rank), it}),
|
||||
a = el % Nv,
|
||||
b = el / Nv;
|
||||
|
||||
sliceIntoVector<F>( this->sources[it]
|
||||
, to, {0, 0}, {No, No}
|
||||
, from, {a, b, 0, 0}, {a+1, b+1, No, No}
|
||||
);
|
||||
sliceIntoVector<F>(this->sources[it], this->sliceSize,
|
||||
to, {0, 0}, {No, No},
|
||||
from, {a, b, 0, 0}, {a+1, b+1, No, No});
|
||||
|
||||
|
||||
}
|
||||
|
||||
@@ -1,3 +1,11 @@
|
||||
#+quicklisp
|
||||
(eval-when (:compile-toplevel :load-toplevel :execute)
|
||||
(ql:quickload '(vgplot fiveam)))
|
||||
|
||||
(defpackage :naive-tuples
|
||||
(:use :cl :vgplot))
|
||||
(in-package :naive-tuples)
|
||||
|
||||
(defun tuples-atrip (nv)
|
||||
(declare (optimize (speed 3) (safety 0) (debug 0)))
|
||||
(loop :for a :below nv
|
||||
@@ -218,58 +226,3 @@
|
||||
cheaper
|
||||
(print (equal (nth i tuples)
|
||||
cheaper)))))
|
||||
|
||||
(let* ((l 101)
|
||||
(tuples (tuples-atrip l)))
|
||||
(loop :for a below l
|
||||
:do (print (let ((s (a-block-atrip a l))
|
||||
(c (count-if (lambda (x) (eq (car x) a))
|
||||
tuples)))
|
||||
(list :a a
|
||||
:size s
|
||||
:real c
|
||||
:? (eq c s))))))
|
||||
|
||||
(ql:quickload 'vgplot)
|
||||
(import 'vgplot:plot)
|
||||
(import 'vgplot:replot)
|
||||
|
||||
(let ((l 10))
|
||||
(plot (mapcar (lambda (x) (getf x :size))
|
||||
(loop :for a upto l
|
||||
collect (list :a a :size (a-block a l))))
|
||||
"penis"))
|
||||
|
||||
(let* ((l 50)
|
||||
(tuples (tuples-half l)))
|
||||
(loop :for a below l
|
||||
:do (print (let ((s (a-block a l))
|
||||
(c (count-if (lambda (x) (eq (car x) a))
|
||||
tuples)))
|
||||
(list :a a
|
||||
:size s
|
||||
:real c
|
||||
:? (eq c s))))))
|
||||
|
||||
(defun range (from to) (loop for i :from from :to to collect i))
|
||||
|
||||
(defun half-again (i nv)
|
||||
(let ((a-block-list (let ((ll (mapcar (lambda (i) (a-block i nv))
|
||||
(range 0 (- nv 1)))))
|
||||
(loop :for i :from 1 :to (length ll)
|
||||
:collect
|
||||
(reduce #'+
|
||||
ll
|
||||
:end i)))))
|
||||
(loop :for blk :in a-block-list
|
||||
:with a = 0
|
||||
:with total-blk = 0
|
||||
:if (eq 0 (floor i blk))
|
||||
:do
|
||||
(let ((i (mod i blk)))
|
||||
(print (list i (- i total-blk) blk a))
|
||||
(return))
|
||||
:else
|
||||
:do (progn
|
||||
(incf a)
|
||||
(setq total-blk blk)))))
|
||||
|
||||
@@ -202,7 +202,7 @@ Atrip::Output Atrip::run(Atrip::Input<F> const& in) {
|
||||
_CHECK_CUDA_SUCCESS("Zijk",
|
||||
cuMemAlloc(&Zijk, sizeof(F) * No * No * No));
|
||||
#else
|
||||
std::vector<F> &Tai = _Tai, &epsi = _epsi, &epsa = _epsa;
|
||||
DataPtr<F> Tai = _Tai.data(), epsi = _epsi.data(), epsa = _epsa.data();
|
||||
Zijk = (DataFieldType<F>*)malloc(No*No*No * sizeof(DataFieldType<F>));
|
||||
Tijk = (DataFieldType<F>*)malloc(No*No*No * sizeof(DataFieldType<F>));
|
||||
#endif
|
||||
@@ -258,6 +258,25 @@ Atrip::Output Atrip::run(Atrip::Input<F> const& in) {
|
||||
// all tensors
|
||||
std::vector< SliceUnion<F>* > unions = {&taphh, &hhha, &abph, &abhh, &tabhh};
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
// TODO: free buffers
|
||||
DataFieldType<F>* _t_buffer;
|
||||
DataFieldType<F>* _vhhh;
|
||||
WITH_CHRONO("double:cuda:alloc",
|
||||
_CHECK_CUDA_SUCCESS("Allocating _t_buffer",
|
||||
cuMemAlloc((CUdeviceptr*)&_t_buffer,
|
||||
No*No*No * sizeof(DataFieldType<F>)));
|
||||
_CHECK_CUDA_SUCCESS("Allocating _vhhh",
|
||||
cuMemAlloc((CUdeviceptr*)&_vhhh,
|
||||
No*No*No * sizeof(DataFieldType<F>)));
|
||||
)
|
||||
//const size_t
|
||||
// bs = Atrip::kernelDimensions.ooo.blocks,
|
||||
//ths = Atrip::kernelDimensions.ooo.threads;
|
||||
//cuda::zeroing<<<bs, ths>>>((DataFieldType<F>*)_t_buffer, NoNoNo);
|
||||
//cuda::zeroing<<<bs, ths>>>((DataFieldType<F>*)_vhhh, NoNoNo);
|
||||
#endif
|
||||
|
||||
// get tuples for the current rank
|
||||
TuplesDistribution *distribution;
|
||||
|
||||
@@ -639,13 +658,23 @@ Atrip::Output Atrip::run(Atrip::Input<F> const& in) {
|
||||
tabhh.unwrapSlice(Slice<F>::AC, abc),
|
||||
tabhh.unwrapSlice(Slice<F>::BC, abc),
|
||||
// -- TIJK
|
||||
(DataFieldType<F>*)Tijk);
|
||||
(DataFieldType<F>*)Tijk
|
||||
#if defined(HAVE_CUDA)
|
||||
// -- tmp buffers
|
||||
,(DataFieldType<F>*)_t_buffer
|
||||
,(DataFieldType<F>*)_vhhh
|
||||
#endif
|
||||
);
|
||||
|
||||
WITH_RANK << iteration << "-th doubles done\n";
|
||||
))
|
||||
}
|
||||
|
||||
// COMPUTE SINGLES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {{{1
|
||||
OCD_Barrier(universe);
|
||||
#if defined(ATRIP_ONLY_DGEMM)
|
||||
if (false)
|
||||
#endif
|
||||
if (!isFakeTuple(i)) {
|
||||
WITH_CHRONO("oneshot-unwrap",
|
||||
WITH_CHRONO("unwrap",
|
||||
@@ -664,7 +693,7 @@ Atrip::Output Atrip::run(Atrip::Input<F> const& in) {
|
||||
(DataFieldType<F>*)Tai,
|
||||
#else
|
||||
singlesContribution<F>(No, Nv, abc[0], abc[1], abc[2],
|
||||
Tai.data(),
|
||||
Tai,
|
||||
#endif
|
||||
(DataFieldType<F>*)abhh.unwrapSlice(Slice<F>::AB,
|
||||
abc),
|
||||
@@ -678,30 +707,73 @@ Atrip::Output Atrip::run(Atrip::Input<F> const& in) {
|
||||
|
||||
|
||||
// COMPUTE ENERGY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {{{1
|
||||
#if defined(ATRIP_ONLY_DGEMM)
|
||||
if (false)
|
||||
#endif /* defined(ATRIP_ONLY_DGEMM) */
|
||||
if (!isFakeTuple(i)) {
|
||||
double tupleEnergy(0.);
|
||||
#if defined(HAVE_CUDA)
|
||||
double *tupleEnergy;
|
||||
cuMemAlloc((DataPtr<double>*)&tupleEnergy, sizeof(double));
|
||||
#else
|
||||
double _tupleEnergy(0.);
|
||||
double *tupleEnergy = &_tupleEnergy;
|
||||
#endif /* defined(HAVE_CUDA) */
|
||||
|
||||
int distinct(0);
|
||||
if (abc[0] == abc[1]) distinct++;
|
||||
if (abc[1] == abc[2]) distinct--;
|
||||
const F epsabc(_epsa[abc[0]] + _epsa[abc[1]] + _epsa[abc[2]]);
|
||||
const double
|
||||
epsabc = std::real(_epsa[abc[0]] + _epsa[abc[1]] + _epsa[abc[2]]);
|
||||
|
||||
DataFieldType<F> _epsabc{epsabc};
|
||||
|
||||
// LOG(0, "AtripCUDA") << "doing energy " << i << "distinct " << distinct << "\n";
|
||||
WITH_CHRONO("energy",
|
||||
/*
|
||||
TODO: think about how to do this on the GPU in the best way possible
|
||||
if ( distinct == 0)
|
||||
tupleEnergy = getEnergyDistinct<F>(epsabc, No, (F*)epsi, (F*)Tijk, (F*)Zijk);
|
||||
else
|
||||
tupleEnergy = getEnergySame<F>(epsabc, No, (F*)epsi, (F*)Tijk, (F*)Zijk);
|
||||
*/
|
||||
)
|
||||
if ( distinct == 0) {
|
||||
ACC_FUNCALL(getEnergyDistinct<DataFieldType<F>>,
|
||||
1, 1, // for cuda
|
||||
_epsabc,
|
||||
No,
|
||||
#if defined(HAVE_CUDA)
|
||||
(DataFieldType<F>*)epsi,
|
||||
(DataFieldType<F>*)Tijk,
|
||||
(DataFieldType<F>*)Zijk,
|
||||
#else
|
||||
epsi,
|
||||
Tijk,
|
||||
Zijk,
|
||||
#endif
|
||||
tupleEnergy);
|
||||
} else {
|
||||
ACC_FUNCALL(getEnergySame<DataFieldType<F>>,
|
||||
1, 1, // for cuda
|
||||
_epsabc,
|
||||
No,
|
||||
#if defined(HAVE_CUDA)
|
||||
(DataFieldType<F>*)epsi,
|
||||
(DataFieldType<F>*)Tijk,
|
||||
(DataFieldType<F>*)Zijk,
|
||||
#else
|
||||
epsi,
|
||||
Tijk,
|
||||
Zijk,
|
||||
#endif
|
||||
tupleEnergy);
|
||||
})
|
||||
|
||||
#if defined(HAVE_CUDA)
|
||||
double host_tuple_energy;
|
||||
cuMemcpyDtoH((void*)&host_tuple_energy,
|
||||
(DataPtr<double>)tupleEnergy,
|
||||
sizeof(double));
|
||||
#else
|
||||
double host_tuple_energy = *tupleEnergy;
|
||||
#endif /* defined(HAVE_CUDA) */
|
||||
|
||||
#if defined(HAVE_OCD) || defined(ATRIP_PRINT_TUPLES)
|
||||
tupleEnergies[abc] = tupleEnergy;
|
||||
tupleEnergies[abc] = host_tuple_energy;
|
||||
#endif
|
||||
|
||||
energy += tupleEnergy;
|
||||
energy += host_tuple_energy;
|
||||
|
||||
}
|
||||
|
||||
@@ -767,6 +839,8 @@ Atrip::Output Atrip::run(Atrip::Input<F> const& in) {
|
||||
Atrip::chrono["iterations"].stop();
|
||||
// ITERATION END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%{{{1
|
||||
|
||||
if (in.maxIterations != 0 && i >= in.maxIterations) break;
|
||||
|
||||
}
|
||||
// END OF MAIN LOOP
|
||||
|
||||
|
||||
@@ -4,8 +4,10 @@
|
||||
|
||||
namespace atrip {
|
||||
|
||||
/* This function is really too slow, below are more performant
|
||||
functions to get tuples.
|
||||
#if defined(ATRIP_NAIVE_SLOW)
|
||||
/*
|
||||
* This function is really too slow, below are more performant
|
||||
* functions to get tuples.
|
||||
*/
|
||||
static
|
||||
ABCTuples get_nth_naive_tuples(size_t Nv, size_t np, int64_t i) {
|
||||
@@ -52,33 +54,26 @@ namespace atrip {
|
||||
return result;
|
||||
|
||||
}
|
||||
|
||||
static
|
||||
inline
|
||||
size_t a_block_atrip(size_t a, size_t nv) {
|
||||
return (nv - 1) * (nv - (a - 1))
|
||||
- ((nv - 1) * nv) / 2
|
||||
+ ((a - 1) * (a - 2)) / 2
|
||||
- 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
static
|
||||
inline
|
||||
size_t a_block_sum_atrip(int64_t T, int64_t nv) {
|
||||
int64_t nv1 = nv - 1, tplus1 = T + 1;
|
||||
return tplus1 * nv1 * nv
|
||||
+ nv1 * tplus1
|
||||
- (nv1 * (T * (T + 1)) / 2)
|
||||
- (tplus1 * (nv1 * nv) / 2)
|
||||
+ (((T * (T + 1) * (1 + 2 * T)) / 6) - 3 * ((T * (T + 1)) / 2)) / 2
|
||||
const int64_t nv_min_1 = nv - 1, t_plus_1 = T + 1;
|
||||
return t_plus_1 * nv_min_1 * nv
|
||||
+ nv_min_1 * t_plus_1
|
||||
- (nv_min_1 * (T * t_plus_1) / 2)
|
||||
- (t_plus_1 * (nv_min_1 * nv) / 2)
|
||||
// do not simplify this expression, only the addition of both parts
|
||||
// is a pair integer, prepare to endure the consequences of
|
||||
// simplifying otherwise
|
||||
+ (((T * t_plus_1 * (1 + 2 * T)) / 6) - 3 * ((T * t_plus_1) / 2)) / 2
|
||||
;
|
||||
// + tplus1;
|
||||
}
|
||||
|
||||
static
|
||||
inline
|
||||
int64_t b_block_sum_atrip (int64_t a, int64_t T, int64_t nv) {
|
||||
|
||||
return nv * ((T - a) + 1)
|
||||
- (T * (T + 1) - a * (a - 1)) / 2
|
||||
- 1;
|
||||
@@ -94,9 +89,6 @@ namespace atrip {
|
||||
a_sums.resize(nv);
|
||||
for (size_t _i = 0; _i < nv; _i++) {
|
||||
a_sums[_i] = a_block_sum_atrip(_i, nv);
|
||||
/*
|
||||
std::cout << Atrip::rank << ": " << _i << " " << a_sums[_i] << std::endl;
|
||||
*/
|
||||
}
|
||||
}
|
||||
|
||||
@@ -114,10 +106,6 @@ namespace atrip {
|
||||
std::vector<int64_t> b_sums(nv - a);
|
||||
for (size_t t = a, i=0; t < nv; t++) {
|
||||
b_sums[i++] = b_block_sum_atrip(a, t, nv);
|
||||
/*
|
||||
std::cout << Atrip::rank << ": b-sum " << i-1 << " "
|
||||
<< ":a " << a << " :t " << t << " = " << b_sums[i-1] << std::endl;
|
||||
*/
|
||||
}
|
||||
int64_t b = a - 1, block_b = block_a;
|
||||
for (const auto& sum: b_sums) {
|
||||
@@ -141,6 +129,11 @@ namespace atrip {
|
||||
inline
|
||||
ABCTuples nth_atrip_distributed(int64_t it, size_t nv, size_t np) {
|
||||
|
||||
// If we are getting the previous tuples in the first iteration,
|
||||
// then just return an impossible tuple, different from the FAKE_TUPLE,
|
||||
// because if FAKE_TUPLE is defined as {0,0,0} slices thereof
|
||||
// are actually attainable.
|
||||
//
|
||||
if (it < 0) {
|
||||
ABCTuples result(np, {nv, nv, nv});
|
||||
return result;
|
||||
@@ -160,9 +153,6 @@ namespace atrip {
|
||||
for (size_t rank = 0; rank < np; rank++) {
|
||||
const size_t
|
||||
global_iteration = tuples_per_rank * rank + it;
|
||||
/*
|
||||
std::cout << Atrip::rank << ":" << "global_bit " << global_iteration << "\n";
|
||||
*/
|
||||
result[rank] = nth_atrip(global_iteration, nv);
|
||||
}
|
||||
|
||||
@@ -248,38 +238,25 @@ namespace atrip {
|
||||
using Database = typename Slice<F>::Database;
|
||||
Database db;
|
||||
|
||||
#ifdef NAIVE_SLOW
|
||||
#ifdef ATRIP_NAIVE_SLOW
|
||||
WITH_CHRONO("db:comm:naive:tuples",
|
||||
const auto tuples = get_nth_naive_tuples(nv,
|
||||
np,
|
||||
iteration);
|
||||
const auto prev_tuples = get_nth_naive_tuples(nv,
|
||||
np,
|
||||
(int64_t)iteration - 1);
|
||||
iteration - 1);
|
||||
)
|
||||
#else
|
||||
WITH_CHRONO("db:comm:naive:tuples",
|
||||
const auto tuples = nth_atrip_distributed((int64_t)iteration,
|
||||
const auto tuples = nth_atrip_distributed(iteration,
|
||||
nv,
|
||||
np);
|
||||
const auto prev_tuples = nth_atrip_distributed((int64_t)iteration - 1,
|
||||
const auto prev_tuples = nth_atrip_distributed(iteration - 1,
|
||||
nv,
|
||||
np);
|
||||
)
|
||||
|
||||
if (false)
|
||||
for (size_t rank = 0; rank < np; rank++) {
|
||||
std::cout << Atrip::rank << ":"
|
||||
<< " :tuples< " << rank << ">" << iteration
|
||||
<< " :abc " << tuples[rank][0]
|
||||
<< ", " << tuples[rank][1]
|
||||
<< ", " << tuples[rank][2] << "\n";
|
||||
std::cout << Atrip::rank << ":"
|
||||
<< " :prev-tuples< " << rank << ">" << iteration
|
||||
<< " :abc-prev " << prev_tuples[rank][0]
|
||||
<< ", " << prev_tuples[rank][1]
|
||||
<< ", " << prev_tuples[rank][2] << "\n";
|
||||
}
|
||||
#endif
|
||||
|
||||
for (size_t rank = 0; rank < np; rank++) {
|
||||
|
||||
@@ -16,96 +16,13 @@
|
||||
#include<atrip/Equations.hpp>
|
||||
|
||||
#include<atrip/CUDA.hpp>
|
||||
#include<atrip/Operations.hpp>
|
||||
|
||||
namespace atrip {
|
||||
// Prolog:2 ends here
|
||||
|
||||
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
namespace cuda {
|
||||
|
||||
// cuda kernels
|
||||
|
||||
template <typename F>
|
||||
__global__
|
||||
void zeroing(F* a, size_t n) {
|
||||
F zero = {0};
|
||||
for (size_t i = 0; i < n; i++) {
|
||||
a[i] = zero;
|
||||
}
|
||||
}
|
||||
|
||||
////
|
||||
template <typename F>
|
||||
__device__
|
||||
F maybeConjugateScalar(const F a);
|
||||
|
||||
template <>
|
||||
__device__
|
||||
double maybeConjugateScalar(const double a) { return a; }
|
||||
|
||||
template <>
|
||||
__device__
|
||||
cuDoubleComplex
|
||||
maybeConjugateScalar(const cuDoubleComplex a) {
|
||||
return {a.x, -a.y};
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
__global__
|
||||
void maybeConjugate(F* to, F* from, size_t n) {
|
||||
for (size_t i = 0; i < n; ++i) {
|
||||
to[i] = maybeConjugateScalar<F>(from[i]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename F>
|
||||
__global__
|
||||
void reorder(F* to, F* from, size_t size, size_t I, size_t J, size_t K) {
|
||||
size_t idx = 0;
|
||||
const size_t IDX = I + J*size + K*size*size;
|
||||
for (size_t k = 0; k < size; k++)
|
||||
for (size_t j = 0; j < size; j++)
|
||||
for (size_t i = 0; i < size; i++, idx++)
|
||||
to[idx] += from[IDX];
|
||||
}
|
||||
|
||||
// I mean, really CUDA... really!?
|
||||
template <typename F>
|
||||
__device__
|
||||
F multiply(const F &a, const F &b);
|
||||
template <>
|
||||
__device__
|
||||
double multiply(const double &a, const double &b) { return a * b; }
|
||||
|
||||
template <>
|
||||
__device__
|
||||
cuDoubleComplex multiply(const cuDoubleComplex &a, const cuDoubleComplex &b) {
|
||||
return
|
||||
{a.x * b.x - a.y * b.y,
|
||||
a.x * b.y + a.y * b.x};
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
__device__
|
||||
void sum_in_place(F* to, const F* from);
|
||||
|
||||
template <>
|
||||
__device__
|
||||
void sum_in_place(double* to, const double *from) { *to += *from; }
|
||||
|
||||
template <>
|
||||
__device__
|
||||
void sum_in_place(cuDoubleComplex* to, const cuDoubleComplex* from) {
|
||||
to->x += from->x;
|
||||
to->y += from->y;
|
||||
}
|
||||
|
||||
};
|
||||
#endif
|
||||
|
||||
#if defined(HAVE_CUDA)
|
||||
#define FOR_K() \
|
||||
for (size_t kmin = blockIdx.x * blockDim.x + threadIdx.x, \
|
||||
@@ -133,7 +50,7 @@ namespace cuda {
|
||||
_REORDER_BODY_(__VA_ARGS__) \
|
||||
}
|
||||
#if defined(HAVE_CUDA)
|
||||
#define GO(__TO, __FROM) cuda::sum_in_place<F>(&__TO, &__FROM);
|
||||
#define GO(__TO, __FROM) acc::sum_in_place<F>(&__TO, &__FROM);
|
||||
#else
|
||||
#define GO(__TO, __FROM) __TO += __FROM;
|
||||
#endif
|
||||
@@ -151,12 +68,11 @@ namespace cuda {
|
||||
KJI
|
||||
};
|
||||
|
||||
/*
|
||||
/*
|
||||
* Please the c++ type checker and template creator
|
||||
* in order to have an argument in the signature of
|
||||
* the function that helps the compiler know which
|
||||
* instantiation it should take.
|
||||
*
|
||||
*/
|
||||
template <typename F, reordering_t R>
|
||||
struct reorder_proxy {};
|
||||
@@ -180,162 +96,205 @@ namespace cuda {
|
||||
#undef _IJK_
|
||||
#undef GO
|
||||
|
||||
#if defined(HAVE_CUDA)
|
||||
# define MIN(a, b) min((a), (b))
|
||||
#else
|
||||
# define MIN(a, b) std::min((a), (b))
|
||||
#endif
|
||||
|
||||
|
||||
// [[file:~/cuda/atrip/atrip.org::*Energy][Energy:2]]
|
||||
template <typename F>
|
||||
double getEnergyDistinct
|
||||
__MAYBE_GLOBAL__
|
||||
void getEnergyDistinct
|
||||
( F const epsabc
|
||||
, size_t const No
|
||||
, F* const epsi
|
||||
, F* const Tijk
|
||||
, F* const Zijk
|
||||
, double* energy
|
||||
) {
|
||||
constexpr size_t blockSize=16;
|
||||
F energy(0.);
|
||||
F _energy = {0.};
|
||||
for (size_t kk=0; kk<No; kk+=blockSize){
|
||||
const size_t kend( std::min(No, kk+blockSize) );
|
||||
const size_t kend( MIN(No, kk+blockSize) );
|
||||
for (size_t jj(kk); jj<No; jj+=blockSize){
|
||||
const size_t jend( std::min( No, jj+blockSize) );
|
||||
const size_t jend( MIN( No, jj+blockSize) );
|
||||
for (size_t ii(jj); ii<No; ii+=blockSize){
|
||||
const size_t iend( std::min( No, ii+blockSize) );
|
||||
const size_t iend( MIN( No, ii+blockSize) );
|
||||
for (size_t k(kk); k < kend; k++){
|
||||
const F ek(epsi[k]);
|
||||
const size_t jstart = jj > k ? jj : k;
|
||||
for (size_t j(jstart); j < jend; j++){
|
||||
F const ej(epsi[j]);
|
||||
F const facjk = j == k ? F(0.5) : F(1.0);
|
||||
F const facjk = j == k ? F{0.5} : F{1.0};
|
||||
size_t istart = ii > j ? ii : j;
|
||||
for (size_t i(istart); i < iend; i++){
|
||||
const F
|
||||
ei(epsi[i])
|
||||
, facij = i == j ? F(0.5) : F(1.0)
|
||||
, denominator(epsabc - ei - ej - ek)
|
||||
, facij = i == j ? F{0.5} : F{1.0}
|
||||
, eijk(acc::add(acc::add(ei, ej), ek))
|
||||
, denominator(acc::sub(epsabc, eijk))
|
||||
, U(Zijk[i + No*j + No*No*k])
|
||||
, V(Zijk[i + No*k + No*No*j])
|
||||
, W(Zijk[j + No*i + No*No*k])
|
||||
, X(Zijk[j + No*k + No*No*i])
|
||||
, Y(Zijk[k + No*i + No*No*j])
|
||||
, Z(Zijk[k + No*j + No*No*i])
|
||||
, A(maybeConjugate<F>(Tijk[i + No*j + No*No*k]))
|
||||
, B(maybeConjugate<F>(Tijk[i + No*k + No*No*j]))
|
||||
, C(maybeConjugate<F>(Tijk[j + No*i + No*No*k]))
|
||||
, D(maybeConjugate<F>(Tijk[j + No*k + No*No*i]))
|
||||
, E(maybeConjugate<F>(Tijk[k + No*i + No*No*j]))
|
||||
, _F(maybeConjugate<F>(Tijk[k + No*j + No*No*i]))
|
||||
, value
|
||||
= 3.0 * ( A * U
|
||||
+ B * V
|
||||
+ C * W
|
||||
+ D * X
|
||||
+ E * Y
|
||||
+ _F * Z )
|
||||
+ ( ( U + X + Y )
|
||||
- 2.0 * ( V + W + Z )
|
||||
) * ( A + D + E )
|
||||
+ ( ( V + W + Z )
|
||||
- 2.0 * ( U + X + Y )
|
||||
) * ( B + C + _F )
|
||||
, A(acc::maybeConjugateScalar(Tijk[i + No*j + No*No*k]))
|
||||
, B(acc::maybeConjugateScalar(Tijk[i + No*k + No*No*j]))
|
||||
, C(acc::maybeConjugateScalar(Tijk[j + No*i + No*No*k]))
|
||||
, D(acc::maybeConjugateScalar(Tijk[j + No*k + No*No*i]))
|
||||
, E(acc::maybeConjugateScalar(Tijk[k + No*i + No*No*j]))
|
||||
, _F(acc::maybeConjugateScalar(Tijk[k + No*j + No*No*i]))
|
||||
, AU = acc::prod(A, U)
|
||||
, BV = acc::prod(B, V)
|
||||
, CW = acc::prod(C, W)
|
||||
, DX = acc::prod(D, X)
|
||||
, EY = acc::prod(E, Y)
|
||||
, FZ = acc::prod(_F, Z)
|
||||
, UXY = acc::add(U, acc::add(X, Y))
|
||||
, VWZ = acc::add(V, acc::add(W, Z))
|
||||
, ADE = acc::add(A, acc::add(D, E))
|
||||
, BCF = acc::add(B, acc::add(C, _F))
|
||||
// I just might as well write this in CL
|
||||
, _first = acc::add(AU,
|
||||
acc::add(BV,
|
||||
acc::add(CW,
|
||||
acc::add(DX,
|
||||
acc::add(EY, FZ)))))
|
||||
, _second = acc::prod(acc::sub(UXY,
|
||||
acc::prod(F{-2.0}, VWZ)),
|
||||
ADE)
|
||||
, _third = acc::prod(acc::sub(VWZ,
|
||||
acc::prod(F{-2.0}, UXY)),
|
||||
BCF)
|
||||
, value = acc::add(acc::prod(F{3.0}, _first),
|
||||
acc::add(_second,
|
||||
_third))
|
||||
, _loop_energy = acc::prod(acc::prod(F{2.0}, value),
|
||||
acc::div(acc::prod(facjk, facij),
|
||||
denominator))
|
||||
;
|
||||
energy += 2.0 * value / denominator * facjk * facij;
|
||||
acc::sum_in_place(&_energy, &_loop_energy);
|
||||
} // i
|
||||
} // j
|
||||
} // k
|
||||
} // ii
|
||||
} // jj
|
||||
} // kk
|
||||
return std::real(energy);
|
||||
const double real_part = acc::real(_energy);
|
||||
acc::sum_in_place(energy, &real_part);
|
||||
}
|
||||
|
||||
|
||||
template <typename F>
|
||||
double getEnergySame
|
||||
__MAYBE_GLOBAL__
|
||||
void getEnergySame
|
||||
( F const epsabc
|
||||
, size_t const No
|
||||
, F* const epsi
|
||||
, F* const Tijk
|
||||
, F* const Zijk
|
||||
, double* energy
|
||||
) {
|
||||
constexpr size_t blockSize = 16;
|
||||
F energy = F(0.);
|
||||
F _energy = F{0.};
|
||||
for (size_t kk=0; kk<No; kk+=blockSize){
|
||||
const size_t kend( std::min( kk+blockSize, No) );
|
||||
const size_t kend( MIN( kk+blockSize, No) );
|
||||
for (size_t jj(kk); jj<No; jj+=blockSize){
|
||||
const size_t jend( std::min( jj+blockSize, No) );
|
||||
const size_t jend( MIN( jj+blockSize, No) );
|
||||
for (size_t ii(jj); ii<No; ii+=blockSize){
|
||||
const size_t iend( std::min( ii+blockSize, No) );
|
||||
const size_t iend( MIN( ii+blockSize, No) );
|
||||
for (size_t k(kk); k < kend; k++){
|
||||
const F ek(epsi[k]);
|
||||
const size_t jstart = jj > k ? jj : k;
|
||||
for(size_t j(jstart); j < jend; j++){
|
||||
const F facjk( j == k ? F(0.5) : F(1.0));
|
||||
const F facjk( j == k ? F{0.5} : F{1.0});
|
||||
const F ej(epsi[j]);
|
||||
const size_t istart = ii > j ? ii : j;
|
||||
for(size_t i(istart); i < iend; i++){
|
||||
const F
|
||||
ei(epsi[i])
|
||||
, facij ( i==j ? F(0.5) : F(1.0))
|
||||
, denominator(epsabc - ei - ej - ek)
|
||||
, facij ( i==j ? F{0.5} : F{1.0})
|
||||
, eijk(acc::add(acc::add(ei, ej), ek))
|
||||
, denominator(acc::sub(epsabc, eijk))
|
||||
, U(Zijk[i + No*j + No*No*k])
|
||||
, V(Zijk[j + No*k + No*No*i])
|
||||
, W(Zijk[k + No*i + No*No*j])
|
||||
, A(maybeConjugate<F>(Tijk[i + No*j + No*No*k]))
|
||||
, B(maybeConjugate<F>(Tijk[j + No*k + No*No*i]))
|
||||
, C(maybeConjugate<F>(Tijk[k + No*i + No*No*j]))
|
||||
, value
|
||||
= F(3.0) * ( A * U
|
||||
+ B * V
|
||||
+ C * W
|
||||
)
|
||||
- ( A + B + C ) * ( U + V + W )
|
||||
, A(acc::maybeConjugateScalar(Tijk[i + No*j + No*No*k]))
|
||||
, B(acc::maybeConjugateScalar(Tijk[j + No*k + No*No*i]))
|
||||
, C(acc::maybeConjugateScalar(Tijk[k + No*i + No*No*j]))
|
||||
, ABC = acc::add(A, acc::add(B, C))
|
||||
, UVW = acc::add(U, acc::add(V, W))
|
||||
, AU = acc::prod(A, U)
|
||||
, BV = acc::prod(B, V)
|
||||
, CW = acc::prod(C, W)
|
||||
, AU_and_BV_and_CW = acc::add(acc::add(AU, BV), CW)
|
||||
, value = acc::sub(acc::prod(F{3.0}, AU_and_BV_and_CW),
|
||||
acc::prod(ABC, UVW))
|
||||
, _loop_energy = acc::prod(acc::prod(F{2.0}, value),
|
||||
acc::div(acc::prod(facjk, facij),
|
||||
denominator))
|
||||
;
|
||||
energy += F(2.0) * value / denominator * facjk * facij;
|
||||
|
||||
acc::sum_in_place(&_energy, &_loop_energy);
|
||||
} // i
|
||||
} // j
|
||||
} // k
|
||||
} // ii
|
||||
} // jj
|
||||
} // kk
|
||||
return std::real(energy);
|
||||
const double real_part = acc::real(_energy);
|
||||
acc::sum_in_place(energy, &real_part);
|
||||
}
|
||||
// Energy:2 ends here
|
||||
|
||||
// [[file:~/cuda/atrip/atrip.org::*Energy][Energy:3]]
|
||||
// instantiate double
|
||||
template
|
||||
double getEnergyDistinct
|
||||
( double const epsabc
|
||||
__MAYBE_GLOBAL__
|
||||
void getEnergyDistinct
|
||||
( DataFieldType<double> const epsabc
|
||||
, size_t const No
|
||||
, double* const epsi
|
||||
, double* const Tijk
|
||||
, double* const Zijk
|
||||
, DataFieldType<double>* const epsi
|
||||
, DataFieldType<double>* const Tijk
|
||||
, DataFieldType<double>* const Zijk
|
||||
, DataFieldType<double>* energy
|
||||
);
|
||||
|
||||
template
|
||||
double getEnergySame
|
||||
( double const epsabc
|
||||
__MAYBE_GLOBAL__
|
||||
void getEnergySame
|
||||
( DataFieldType<double> const epsabc
|
||||
, size_t const No
|
||||
, double* const epsi
|
||||
, double* const Tijk
|
||||
, double* const Zijk
|
||||
, DataFieldType<double>* const epsi
|
||||
, DataFieldType<double>* const Tijk
|
||||
, DataFieldType<double>* const Zijk
|
||||
, DataFieldType<double>* energy
|
||||
);
|
||||
|
||||
// instantiate Complex
|
||||
template
|
||||
double getEnergyDistinct
|
||||
( Complex const epsabc
|
||||
__MAYBE_GLOBAL__
|
||||
void getEnergyDistinct
|
||||
( DataFieldType<Complex> const epsabc
|
||||
, size_t const No
|
||||
, Complex* const epsi
|
||||
, Complex* const Tijk
|
||||
, Complex* const Zijk
|
||||
, DataFieldType<Complex>* const epsi
|
||||
, DataFieldType<Complex>* const Tijk
|
||||
, DataFieldType<Complex>* const Zijk
|
||||
, DataFieldType<double>* energy
|
||||
);
|
||||
|
||||
template
|
||||
double getEnergySame
|
||||
( Complex const epsabc
|
||||
__MAYBE_GLOBAL__
|
||||
void getEnergySame
|
||||
( DataFieldType<Complex> const epsabc
|
||||
, size_t const No
|
||||
, Complex* const epsi
|
||||
, Complex* const Tijk
|
||||
, Complex* const Zijk
|
||||
, DataFieldType<Complex>* const epsi
|
||||
, DataFieldType<Complex>* const Tijk
|
||||
, DataFieldType<Complex>* const Zijk
|
||||
, DataFieldType<double>* energy
|
||||
);
|
||||
// Energy:3 ends here
|
||||
|
||||
@@ -361,18 +320,26 @@ double getEnergySame
|
||||
const size_t ijk = i + j*No + k*NoNo;
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
# define GO(__TPH, __VABIJ) \
|
||||
{ \
|
||||
const DataFieldType<F> product \
|
||||
= cuda::multiply<DataFieldType<F>>((__TPH), (__VABIJ)); \
|
||||
cuda::sum_in_place<DataFieldType<F>>(&Zijk[ijk], &product); \
|
||||
}
|
||||
|
||||
#define GO(__TPH, __VABIJ) \
|
||||
do { \
|
||||
const DataFieldType<F> \
|
||||
product = acc::prod<DataFieldType<F>>((__TPH), \
|
||||
(__VABIJ)); \
|
||||
acc::sum_in_place<DataFieldType<F>>(&Zijk[ijk], \
|
||||
&product); \
|
||||
} while (0)
|
||||
|
||||
#else
|
||||
# define GO(__TPH, __VABIJ) Zijk[ijk] += (__TPH) * (__VABIJ);
|
||||
|
||||
#define GO(__TPH, __VABIJ) Zijk[ijk] += (__TPH) * (__VABIJ)
|
||||
|
||||
#endif
|
||||
GO(Tph[ a + i * Nv ], VBCij[ j + k * No ])
|
||||
GO(Tph[ b + j * Nv ], VACij[ i + k * No ])
|
||||
GO(Tph[ c + k * Nv ], VABij[ i + j * No ])
|
||||
|
||||
GO(Tph[ a + i * Nv ], VBCij[ j + k * No ]);
|
||||
GO(Tph[ b + j * Nv ], VACij[ i + k * No ]);
|
||||
GO(Tph[ c + k * Nv ], VABij[ i + j * No ]);
|
||||
|
||||
#undef GO
|
||||
} // for loop j
|
||||
}
|
||||
@@ -434,8 +401,12 @@ double getEnergySame
|
||||
// -- TIJK
|
||||
// , DataPtr<F> Tijk_
|
||||
, DataFieldType<F>* Tijk_
|
||||
) {
|
||||
|
||||
#if defined(HAVE_CUDA)
|
||||
// -- tmp buffers
|
||||
, DataFieldType<F>* _t_buffer
|
||||
, DataFieldType<F>* _vhhh
|
||||
#endif
|
||||
) {
|
||||
const size_t a = abc[0], b = abc[1], c = abc[2]
|
||||
, NoNo = No*No
|
||||
;
|
||||
@@ -444,14 +415,14 @@ double getEnergySame
|
||||
|
||||
#if defined(ATRIP_USE_DGEMM)
|
||||
#if defined(HAVE_CUDA)
|
||||
#define REORDER(__II, __JJ, __KK) \
|
||||
reorder<<<bs, ths>>>(reorder_proxy< \
|
||||
DataFieldType<F>, \
|
||||
__II ## __JJ ## __KK \
|
||||
>{}, \
|
||||
No, \
|
||||
Tijk, \
|
||||
_t_buffer);
|
||||
#define REORDER(__II, __JJ, __KK) \
|
||||
reorder<<<bs, ths>>>(reorder_proxy< \
|
||||
DataFieldType<F>, \
|
||||
__II ## __JJ ## __KK \
|
||||
>{}, \
|
||||
No, \
|
||||
Tijk, \
|
||||
_t_buffer)
|
||||
#define DGEMM_PARTICLES(__A, __B) \
|
||||
atrip::xgemm<F>("T", \
|
||||
"N", \
|
||||
@@ -481,11 +452,18 @@ double getEnergySame
|
||||
_t_buffer, \
|
||||
(int const*)&NoNo \
|
||||
)
|
||||
#define MAYBE_CONJ(_conj, _buffer) \
|
||||
cuda::maybeConjugate<<< \
|
||||
Atrip::kernelDimensions.ooo.blocks, \
|
||||
Atrip::kernelDimensions.ooo.threads \
|
||||
>>>((DataFieldType<F>*)_conj, (DataFieldType<F>*)_buffer, NoNoNo);
|
||||
#define MAYBE_CONJ(_conj, _buffer) \
|
||||
do { \
|
||||
acc::maybeConjugate<<< \
|
||||
\
|
||||
Atrip::kernelDimensions.ooo.blocks, \
|
||||
\
|
||||
Atrip::kernelDimensions.ooo.threads \
|
||||
\
|
||||
>>>((DataFieldType<F>*)_conj, \
|
||||
(DataFieldType<F>*)_buffer, \
|
||||
NoNoNo); \
|
||||
} while (0)
|
||||
|
||||
|
||||
// END CUDA ////////////////////////////////////////////////////////////////////
|
||||
@@ -500,7 +478,9 @@ double getEnergySame
|
||||
#define REORDER(__II, __JJ, __KK) \
|
||||
reorder(reorder_proxy<DataFieldType<F>, \
|
||||
__II ## __JJ ## __KK >{}, \
|
||||
No, Tijk, _t_buffer);
|
||||
No, \
|
||||
Tijk, \
|
||||
_t_buffer)
|
||||
#define DGEMM_PARTICLES(__A, __B) \
|
||||
atrip::xgemm<F>("T", \
|
||||
"N", \
|
||||
@@ -531,29 +511,37 @@ double getEnergySame
|
||||
_t_buffer, \
|
||||
(int const*)&NoNo \
|
||||
)
|
||||
#define MAYBE_CONJ(_conj, _buffer) \
|
||||
for (size_t __i = 0; __i < NoNoNo; ++__i) \
|
||||
_conj[__i] = maybeConjugate<F>(_buffer[__i]);
|
||||
#define MAYBE_CONJ(_conj, _buffer) \
|
||||
do { \
|
||||
for (size_t __i = 0; __i < NoNoNo; ++__i) { \
|
||||
_conj[__i] \
|
||||
= maybeConjugate<F>(_buffer[__i]); \
|
||||
} \
|
||||
} while (0)
|
||||
#endif
|
||||
|
||||
F one{1.0}, m_one{-1.0}, zero{0.0};
|
||||
const size_t NoNoNo = No*NoNo;
|
||||
#ifdef HAVE_CUDA
|
||||
DataFieldType<F>* _t_buffer;
|
||||
DataFieldType<F>* _vhhh;
|
||||
WITH_CHRONO("double:cuda:alloc",
|
||||
_CHECK_CUDA_SUCCESS("Allocating _t_buffer",
|
||||
cuMemAlloc((CUdeviceptr*)&_t_buffer,
|
||||
NoNoNo * sizeof(DataFieldType<F>)));
|
||||
_CHECK_CUDA_SUCCESS("Allocating _vhhh",
|
||||
cuMemAlloc((CUdeviceptr*)&_vhhh,
|
||||
NoNoNo * sizeof(DataFieldType<F>)));
|
||||
)
|
||||
// DataFieldType<F>* _t_buffer;
|
||||
// DataFieldType<F>* _vhhh;
|
||||
// WITH_CHRONO("double:cuda:alloc",
|
||||
// _CHECK_CUDA_SUCCESS("Allocating _t_buffer",
|
||||
// cuMemAlloc((CUdeviceptr*)&_t_buffer,
|
||||
// NoNoNo * sizeof(DataFieldType<F>)));
|
||||
// _CHECK_CUDA_SUCCESS("Allocating _vhhh",
|
||||
// cuMemAlloc((CUdeviceptr*)&_vhhh,
|
||||
// NoNoNo * sizeof(DataFieldType<F>)));
|
||||
// )
|
||||
#if !defined(ATRIP_ONLY_DGEMM)
|
||||
// we still have to zero this
|
||||
const size_t
|
||||
bs = Atrip::kernelDimensions.ooo.blocks,
|
||||
ths = Atrip::kernelDimensions.ooo.threads;
|
||||
cuda::zeroing<<<bs, ths>>>((DataFieldType<F>*)_t_buffer, NoNoNo);
|
||||
cuda::zeroing<<<bs, ths>>>((DataFieldType<F>*)_vhhh, NoNoNo);
|
||||
acc::zeroing<<<bs, ths>>>((DataFieldType<F>*)_t_buffer, NoNoNo);
|
||||
acc::zeroing<<<bs, ths>>>((DataFieldType<F>*)_vhhh, NoNoNo);
|
||||
#endif
|
||||
|
||||
#else
|
||||
DataFieldType<F>* _t_buffer = (DataFieldType<F>*)malloc(NoNoNo * sizeof(F));
|
||||
DataFieldType<F>* _vhhh = (DataFieldType<F>*)malloc(NoNoNo * sizeof(F));
|
||||
@@ -565,55 +553,65 @@ double getEnergySame
|
||||
#endif
|
||||
|
||||
// Set Tijk to zero
|
||||
#ifdef HAVE_CUDA
|
||||
#if defined(HAVE_CUDA) && !defined(ATRIP_ONLY_DGEMM)
|
||||
WITH_CHRONO("double:reorder",
|
||||
cuda::zeroing<<<bs, ths>>>((DataFieldType<F>*)Tijk,
|
||||
acc::zeroing<<<bs, ths>>>((DataFieldType<F>*)Tijk,
|
||||
NoNoNo);
|
||||
)
|
||||
#else
|
||||
#endif
|
||||
|
||||
#if !defined(HAVE_CUDA)
|
||||
WITH_CHRONO("double:reorder",
|
||||
for (size_t k = 0; k < NoNoNo; k++) {
|
||||
Tijk[k] = DataFieldType<F>{0.0};
|
||||
})
|
||||
#endif
|
||||
#endif /* !defined(HAVE_CUDA) */
|
||||
|
||||
|
||||
#if defined(ATRIP_ONLY_DGEMM)
|
||||
#undef MAYBE_CONJ
|
||||
#undef REORDER
|
||||
#define MAYBE_CONJ(a, b) do {} while(0)
|
||||
#define REORDER(i, j, k) do {} while(0)
|
||||
#endif /* defined(ATRIP_ONLY_DGEMM) */
|
||||
|
||||
// HOLES
|
||||
WITH_CHRONO("doubles:holes",
|
||||
{
|
||||
// VhhhC[i + k*No + L*NoNo] * TABhh[L + j*No]; H1
|
||||
MAYBE_CONJ(_vhhh, VhhhC)
|
||||
MAYBE_CONJ(_vhhh, VhhhC);
|
||||
WITH_CHRONO("doubles:holes:1",
|
||||
DGEMM_HOLES(_vhhh, TABhh, "N");
|
||||
REORDER(I, K, J)
|
||||
REORDER(I, K, J);
|
||||
)
|
||||
// VhhhC[j + k*No + L*NoNo] * TABhh[i + L*No]; H0
|
||||
WITH_CHRONO("doubles:holes:2",
|
||||
DGEMM_HOLES(_vhhh, TABhh, "T");
|
||||
REORDER(J, K, I)
|
||||
REORDER(J, K, I);
|
||||
)
|
||||
|
||||
// VhhhB[i + j*No + L*NoNo] * TAChh[L + k*No]; H5
|
||||
MAYBE_CONJ(_vhhh, VhhhB)
|
||||
MAYBE_CONJ(_vhhh, VhhhB);
|
||||
WITH_CHRONO("doubles:holes:3",
|
||||
DGEMM_HOLES(_vhhh, TAChh, "N");
|
||||
REORDER(I, J, K)
|
||||
REORDER(I, J, K);
|
||||
)
|
||||
// VhhhB[k + j*No + L*NoNo] * TAChh[i + L*No]; H3
|
||||
WITH_CHRONO("doubles:holes:4",
|
||||
DGEMM_HOLES(_vhhh, TAChh, "T");
|
||||
REORDER(K, J, I)
|
||||
REORDER(K, J, I);
|
||||
)
|
||||
|
||||
// VhhhA[j + i*No + L*NoNo] * TBChh[L + k*No]; H1
|
||||
MAYBE_CONJ(_vhhh, VhhhA)
|
||||
MAYBE_CONJ(_vhhh, VhhhA);
|
||||
WITH_CHRONO("doubles:holes:5",
|
||||
DGEMM_HOLES(_vhhh, TBChh, "N");
|
||||
REORDER(J, I, K)
|
||||
REORDER(J, I, K);
|
||||
)
|
||||
// VhhhA[k + i*No + L*NoNo] * TBChh[j + L*No]; H4
|
||||
WITH_CHRONO("doubles:holes:6",
|
||||
DGEMM_HOLES(_vhhh, TBChh, "T");
|
||||
REORDER(K, I, J)
|
||||
REORDER(K, I, J);
|
||||
)
|
||||
}
|
||||
)
|
||||
@@ -625,32 +623,32 @@ double getEnergySame
|
||||
// TAphh[E + i*Nv + j*NoNv] * VBCph[E + k*Nv]; P0
|
||||
WITH_CHRONO("doubles:particles:1",
|
||||
DGEMM_PARTICLES(TAphh, VBCph);
|
||||
REORDER(I, J, K)
|
||||
REORDER(I, J, K);
|
||||
)
|
||||
// TAphh[E + i*Nv + k*NoNv] * VCBph[E + j*Nv]; P3
|
||||
WITH_CHRONO("doubles:particles:2",
|
||||
DGEMM_PARTICLES(TAphh, VCBph);
|
||||
REORDER(I, K, J)
|
||||
REORDER(I, K, J);
|
||||
)
|
||||
// TCphh[E + k*Nv + i*NoNv] * VABph[E + j*Nv]; P5
|
||||
WITH_CHRONO("doubles:particles:3",
|
||||
DGEMM_PARTICLES(TCphh, VABph);
|
||||
REORDER(K, I, J)
|
||||
REORDER(K, I, J);
|
||||
)
|
||||
// TCphh[E + k*Nv + j*NoNv] * VBAph[E + i*Nv]; P2
|
||||
WITH_CHRONO("doubles:particles:4",
|
||||
DGEMM_PARTICLES(TCphh, VBAph);
|
||||
REORDER(K, J, I)
|
||||
REORDER(K, J, I);
|
||||
)
|
||||
// TBphh[E + j*Nv + i*NoNv] * VACph[E + k*Nv]; P1
|
||||
WITH_CHRONO("doubles:particles:5",
|
||||
DGEMM_PARTICLES(TBphh, VACph);
|
||||
REORDER(J, I, K)
|
||||
REORDER(J, I, K);
|
||||
)
|
||||
// TBphh[E + j*Nv + k*NoNv] * VCAph[E + i*Nv]; P4
|
||||
WITH_CHRONO("doubles:particles:6",
|
||||
DGEMM_PARTICLES(TBphh, VCAph);
|
||||
REORDER(J, K, I)
|
||||
REORDER(J, K, I);
|
||||
)
|
||||
}
|
||||
)
|
||||
@@ -659,16 +657,16 @@ double getEnergySame
|
||||
#ifdef HAVE_CUDA
|
||||
// we need to synchronize here since we need
|
||||
// the Tijk for next process in the pipeline
|
||||
_CHECK_CUDA_SUCCESS("Synchronizing",
|
||||
cuCtxSynchronize());
|
||||
_CHECK_CUDA_SUCCESS("Freeing _vhhh",
|
||||
cuMemFree((CUdeviceptr)_vhhh));
|
||||
_CHECK_CUDA_SUCCESS("Freeing _t_buffer",
|
||||
cuMemFree((CUdeviceptr)_t_buffer));
|
||||
//_CHECK_CUDA_SUCCESS("Synchronizing",
|
||||
// cuCtxSynchronize());
|
||||
//_CHECK_CUDA_SUCCESS("Freeing _vhhh",
|
||||
// cuMemFree((CUdeviceptr)_vhhh));
|
||||
//_CHECK_CUDA_SUCCESS("Freeing _t_buffer",
|
||||
// cuMemFree((CUdeviceptr)_t_buffer));
|
||||
#else
|
||||
free(_vhhh);
|
||||
free(_t_buffer);
|
||||
#endif
|
||||
#endif /* defined(HAVE_CUDA) */
|
||||
}
|
||||
|
||||
#undef REORDER
|
||||
@@ -719,7 +717,7 @@ double getEnergySame
|
||||
}
|
||||
|
||||
}
|
||||
#endif
|
||||
#endif /* defined(ATRIP_USE_DGEMM) */
|
||||
}
|
||||
|
||||
|
||||
@@ -751,6 +749,12 @@ double getEnergySame
|
||||
, DataPtr<double> const TBChh
|
||||
// -- TIJK
|
||||
, DataFieldType<double>* Tijk
|
||||
#if defined(HAVE_CUDA)
|
||||
// -- tmp buffers
|
||||
, DataFieldType<double>* _t_buffer
|
||||
, DataFieldType<double>* _vhhh
|
||||
#endif
|
||||
|
||||
);
|
||||
|
||||
template
|
||||
@@ -779,6 +783,12 @@ double getEnergySame
|
||||
, DataPtr<Complex> const TBChh
|
||||
// -- TIJK
|
||||
, DataFieldType<Complex>* Tijk
|
||||
#if defined(HAVE_CUDA)
|
||||
// -- tmp buffers
|
||||
, DataFieldType<Complex>* _t_buffer
|
||||
, DataFieldType<Complex>* _vhhh
|
||||
#endif
|
||||
|
||||
);
|
||||
// Doubles contribution:2 ends here
|
||||
|
||||
|
||||
183
tools/configure-benches.sh
Executable file
183
tools/configure-benches.sh
Executable file
@@ -0,0 +1,183 @@
|
||||
#!/usr/bin/env bash
|
||||
# Copyright (C) 2022 by Alejandro Gallo <aamsgallo@gmail.com>
|
||||
|
||||
set -eu
|
||||
|
||||
flags=("${@}")
|
||||
PROJECTS=()
|
||||
|
||||
############################################################
|
||||
#
|
||||
## Check root directory
|
||||
#
|
||||
root_project=$(git rev-parse --show-toplevel)
|
||||
configure=$root_project/configure
|
||||
if [[ $(basename $PWD) == $(basename $root_project) ]]; then
|
||||
cat <<EOF
|
||||
|
||||
You are trying to build in the root directory, create a build folder
|
||||
and then configure.
|
||||
|
||||
mkdir build
|
||||
cd build
|
||||
$(readlink -f $0)
|
||||
|
||||
EOF
|
||||
exit 1
|
||||
fi
|
||||
|
||||
[[ -f $configure ]] || {
|
||||
cat <<EOF
|
||||
No configure script at $configure create it with bootstrap.sh or
|
||||
|
||||
autoreconf -vif
|
||||
|
||||
EOF
|
||||
exit 1
|
||||
}
|
||||
|
||||
############################################################
|
||||
#
|
||||
## Create configuration function
|
||||
#
|
||||
|
||||
create_config () {
|
||||
file=$1
|
||||
name=$2
|
||||
PROJECTS=(${PROJECTS[@]} "$name")
|
||||
mkdir -p $name
|
||||
cd $name
|
||||
echo "> creating: $name"
|
||||
cat <<SH > configure
|
||||
#!/usr/bin/env bash
|
||||
# creator: $0
|
||||
# date: $(date)
|
||||
|
||||
$root_project/configure $(cat $file | paste -s) \\
|
||||
$(for word in "${flags[@]}"; do
|
||||
printf " \"%s\"" "$word";
|
||||
done)
|
||||
|
||||
|
||||
exit 0
|
||||
SH
|
||||
chmod +x configure
|
||||
cd - > /dev/null
|
||||
}
|
||||
|
||||
############################################################
|
||||
# begin doc
|
||||
#
|
||||
# - default ::
|
||||
# This configuration uses a CPU code with dgemm
|
||||
# and without computing slices.
|
||||
#
|
||||
# end doc
|
||||
|
||||
tmp=`mktemp`
|
||||
cat <<EOF > $tmp
|
||||
--disable-slice
|
||||
EOF
|
||||
|
||||
create_config $tmp default
|
||||
rm $tmp
|
||||
|
||||
# begin doc
|
||||
#
|
||||
# - only-dgemm ::
|
||||
# This only runs the computation part that involves dgemms.
|
||||
#
|
||||
# end doc
|
||||
|
||||
tmp=`mktemp`
|
||||
cat <<EOF > $tmp
|
||||
--disable-slice
|
||||
--enable-only-dgemm
|
||||
EOF
|
||||
|
||||
create_config $tmp only-dgemm
|
||||
rm $tmp
|
||||
|
||||
# begin doc
|
||||
#
|
||||
# - cuda-only-dgemm ::
|
||||
# This is the naive CUDA implementation compiling only the dgemm parts
|
||||
# of the compute.
|
||||
#
|
||||
# end doc
|
||||
|
||||
tmp=`mktemp`
|
||||
cat <<EOF > $tmp
|
||||
--enable-cuda
|
||||
--enable-only-dgemm
|
||||
--disable-slice
|
||||
EOF
|
||||
|
||||
create_config $tmp cuda-only-dgemm
|
||||
rm $tmp
|
||||
|
||||
# begin doc
|
||||
#
|
||||
# - cuda-slices-on-gpu-only-dgemm ::
|
||||
# This configuration tests that slices reside completely on the gpu
|
||||
# and it should use a CUDA aware MPI implementation.
|
||||
# It also only uses the routines that involve dgemm.
|
||||
#
|
||||
# end doc
|
||||
|
||||
tmp=`mktemp`
|
||||
cat <<EOF > $tmp
|
||||
--enable-cuda
|
||||
--enable-sources-in-gpu
|
||||
--enable-cuda-aware-mpi
|
||||
--enable-only-dgemm
|
||||
--disable-slice
|
||||
EOF
|
||||
|
||||
create_config $tmp cuda-slices-on-gpu-only-dgemm
|
||||
rm $tmp
|
||||
|
||||
############################################################
|
||||
#
|
||||
## Create makefile
|
||||
#
|
||||
|
||||
cat <<MAKE > Makefile
|
||||
|
||||
all: configure do
|
||||
do: configure
|
||||
|
||||
configure: ${PROJECTS[@]/%/\/Makefile}
|
||||
|
||||
%/Makefile: %/configure
|
||||
cd \$* && ./configure
|
||||
|
||||
do: ${PROJECTS[@]/%/\/src\/libatrip.a}
|
||||
|
||||
|
||||
%/src/libatrip.a:
|
||||
cd \$* && \$(MAKE)
|
||||
|
||||
|
||||
.PHONY: configure do all
|
||||
MAKE
|
||||
|
||||
cat <<EOF
|
||||
|
||||
Now you can do
|
||||
|
||||
make all
|
||||
|
||||
or go into one of the directories
|
||||
${PROJECTS[@]}
|
||||
and do
|
||||
./configure
|
||||
make
|
||||
|
||||
EOF
|
||||
|
||||
## Emacs stuff
|
||||
# Local Variables:
|
||||
# eval: (outline-minor-mode)
|
||||
# outline-regexp: "############################################################"
|
||||
# End:
|
||||
Reference in New Issue
Block a user