Compare commits

..

19 Commits

Author SHA1 Message Date
122329eca7 Fix zeroing 2023-01-23 17:01:29 +01:00
Ania Brown
58c0bf078e Zero Tijk correctly in CPU code 2023-01-23 16:58:08 +01:00
3fe15e5e5c Fix bs and ths error in equations 2023-01-23 16:57:07 +01:00
0d223e6ed9 Fix vector types for energy in cpu 2023-01-23 14:44:54 +01:00
c8bdc4239f Fix an odd character in the warmup 2023-01-23 14:43:17 +01:00
Ania Brown
be96e4bf8c 1.syntax error fix 2.allocate temporary buffers only once per sim 2023-01-23 14:30:11 +01:00
Anna Brown
9003c218a3 don't need to copy to separate mpi_data array on the host when sources are resident on gpu 2023-01-23 14:25:25 +01:00
Ania Brown
4af47a0bb7 Initialize sources on gpus when ATRIP_SOURCES_IN_GPU 2023-01-23 14:21:51 +01:00
Ania Brown
9a5a2487be Add warmup in the SliceUnion 2023-01-23 13:46:20 +01:00
c4ec227185 Clean getEnergyDistinct 2023-01-13 16:59:19 +01:00
1ceb4cf0d6 Fix maybeConjugate cuda scope 2023-01-13 12:08:54 +01:00
34a4e79db0 Initial compiling implementation of the energy kernel 2023-01-13 11:33:42 +01:00
249f1c0b51 Add raven modules for cuda 2023-01-04 15:23:36 +01:00
1d96800d45 Add support for reading tensors from file in atrip bench 2022-12-06 21:20:03 +01:00
9087e3af19 Update workflows 2022-12-06 20:58:32 +01:00
418fd9d389 Add simple cuda bench configuration 2022-12-06 20:57:34 +01:00
895cd02778 Add some documentation about running the benches 2022-12-06 20:38:57 +01:00
8efa3d911e Add --max-iterations to main bench 2022-12-06 20:38:38 +01:00
0fa24404e5 Improve the documentation in the readme for benches building 2022-12-06 14:17:53 +01:00
14 changed files with 718 additions and 263 deletions

View File

@ -2,6 +2,8 @@
name: CI
on:
push:
branches: [ master, cuda ]
pull_request:
branches: [ master, cuda ]

View File

@ -69,10 +69,10 @@ And then you can see the =configure= options
../../configure --help
#+end_src
** Benchmarks
** Benches
The script =tools/configure-benches.sh= can be used to create
a couple of configurations for benchmarks:
a couple of configurations for benches:
#+begin_src sh :exports results :results verbatim org :results verbatim drawer replace output
awk '/begin +doc/,/end +doc/ { print $NL }' tools/configure-benches.sh |
@ -87,8 +87,49 @@ sed "s/^# //; s/^# *$//; /^$/d"
and without computing slices.
- only-dgemm ::
This only runs the computation part that involves dgemms.
- slices-on-gpu-only-dgemm ::
- cuda-only-dgemm ::
This is the naive CUDA implementation compiling only the dgemm parts
of the compute.
- cuda-slices-on-gpu-only-dgemm ::
This configuration tests that slices reside completely on the gpu
and it should use a CUDA aware MPI implementation.
It also only uses the routines that involve dgemm.
:end:
In order to generate the benches just create a suitable directory for it
#+begin_src sh :eval no
mkdir -p build/benches
cd buid/benches
../../tools/configure-benches.sh CXX=g++ ...
#+end_src
and you will get a Makefile together with several project folders.
You can either configure all projects with =make all= or
then go in each folder.
Notice that you can give a path for ctf for all of them by doing
#+begin_src sh :eval no
../../tools/configure-benches.sh --with-ctf=/absolute/path/to/ctf
#+end_src
* Running benches
** Main benchmark
The main benchmark gets built in =bench/atrip= and is used to run an
atrip run with random tensors.
A common run of this script will be the following
#+begin_src sh
bench/atrip \
--no 100 \
--nv 1000 \
--mod 1 \
--% 0 \
--dist group \
--nocheckpoint \
--max-iterations 1000
#+end_src

View File

@ -5,18 +5,20 @@
#include <CLI11.hpp>
#define _print_size(what, size) \
do { \
if (rank == 0) { \
std::cout << #what \
<< " => " \
<< (double)size * elem_to_gb \
<< "GB" \
<< std::endl; \
}
} \
} while (0)
int main(int argc, char** argv) {
MPI_Init(&argc, &argv);
size_t checkpoint_it;
size_t checkpoint_it, max_iterations;
int no(10), nv(100), itMod(-1), percentageMod(10);
float checkpoint_percentage;
bool
@ -30,6 +32,9 @@ int main(int argc, char** argv) {
app.add_option("--no", no, "Occupied orbitals");
app.add_option("--nv", nv, "Virtual orbitals");
app.add_option("--mod", itMod, "Iteration modifier");
app.add_option("--max-iterations",
max_iterations,
"Maximum number of iterations to run");
app.add_flag("--keep-vppph", keepVppph, "Do not delete Vppph");
app.add_flag("--nochrono", nochrono, "Do not print chrono");
app.add_flag("--rank-round-robin", rankRoundRobin, "Do rank round robin");
@ -45,6 +50,19 @@ int main(int argc, char** argv) {
checkpoint_percentage,
"Percentage for checkpoints");
// Optional tensor files
std::string
ei_path, ea_path,
Tph_path, Tpphh_path,
Vpphh_path, Vhhhp_path, Vppph_path;
app.add_option("--ei", ei_path, "Path for ei");
app.add_option("--ea", ea_path, "Path for ea");
app.add_option("--Tpphh", Tpphh_path, "Path for Tpphh");
app.add_option("--Tph", Tph_path, "Path for Tph");
app.add_option("--Vpphh", Vpphh_path, "Path for Vpphh");
app.add_option("--Vhhhp", Vhhhp_path, "Path for Vhhhp");
app.add_option("--Vppph", Vppph_path, "Path for Vppph");
#if defined(HAVE_CUDA)
size_t ooo_threads = 0, ooo_blocks = 0;
app.add_option("--ooo-blocks",
@ -148,37 +166,64 @@ int main(int argc, char** argv) {
}
std::vector<int> symmetries(4, NS)
, vo({nv, no})
, vvoo({nv, nv, no, no})
, ooov({no, no, no, nv})
, vvvo({nv, nv, nv, no})
;
std::vector<int>
symmetries(4, NS),
vo({nv, no}),
vvoo({nv, nv, no, no}),
ooov({no, no, no, nv}),
vvvo({nv, nv, nv, no});
CTF::Tensor<double>
ei(1, ooov.data(), symmetries.data(), world)
, ea(1, vo.data(), symmetries.data(), world)
, Tph(2, vo.data(), symmetries.data(), world)
, Tpphh(4, vvoo.data(), symmetries.data(), world)
, Vpphh(4, vvoo.data(), symmetries.data(), world)
, Vhhhp(4, ooov.data(), symmetries.data(), world)
;
ei(1, ooov.data(), symmetries.data(), world),
ea(1, vo.data(), symmetries.data(), world),
Tph(2, vo.data(), symmetries.data(), world),
Tpphh(4, vvoo.data(), symmetries.data(), world),
Vpphh(4, vvoo.data(), symmetries.data(), world),
Vhhhp(4, ooov.data(), symmetries.data(), world);
// initialize deletable tensors in heap
auto Vppph
= new CTF::Tensor<double>(4, vvvo.data(), symmetries.data(), world);
_print_size(Vabci, no*nv*nv*nv)
_print_size(Vabij, no*no*nv*nv)
_print_size(Vijka, no*no*no*nv)
_print_size(Vabci, no*nv*nv*nv);
_print_size(Vabij, no*no*nv*nv);
_print_size(Vijka, no*no*no*nv);
if (ei_path.size()) {
ei.read_dense_from_file(ei_path.c_str());
} else {
ei.fill_random(-40.0, -2);
}
if (ea_path.size()) {
ea.read_dense_from_file(ea_path.c_str());
} else {
ea.fill_random(2, 50);
}
if (Tpphh_path.size()) {
Tpphh.read_dense_from_file(Tpphh_path.c_str());
} else {
Tpphh.fill_random(0, 1);
}
if (Tph_path.size()) {
Tph.read_dense_from_file(Tph_path.c_str());
} else {
Tph.fill_random(0, 1);
}
if (Vpphh_path.size()) {
Vpphh.read_dense_from_file(Vpphh_path.c_str());
} else {
Vpphh.fill_random(0, 1);
}
if (Vhhhp_path.size()) {
Vhhhp.read_dense_from_file(Vhhhp_path.c_str());
} else {
Vhhhp.fill_random(0, 1);
}
if (Vppph_path.size()) {
Vppph->read_dense_from_file(Vppph_path.c_str());
} else {
Vppph->fill_random(0, 1);
}
atrip::Atrip::init(MPI_COMM_WORLD);
const auto in
@ -199,6 +244,7 @@ int main(int argc, char** argv) {
.with_iterationMod(itMod)
.with_percentageMod(percentageMod)
.with_tuplesDistribution(tuplesDistribution)
.with_maxIterations(max_iterations)
// checkpoint options
.with_checkpointAtEveryIteration(checkpoint_it)
.with_checkpointAtPercentage(checkpoint_percentage)

View File

@ -164,8 +164,7 @@ AC_TYPE_SIZE_T
dnl -----------------------------------------------------------------------
dnl CHECK CTF
if test xYES = x${BUILD_CTF}; then
AC_MSG_WARN([Sorry, building CTF not supported yet provide a build path
with --with-ctf=path/to/ctf/installation])
AC_MSG_WARN([You will have to do make ctf before building the project.])
else
CPPFLAGS="$CPPFLAGS -I${LIBCTF_CPATH}"
LDFLAGS="$LDFLAGS -L${LIBCTF_LD_LIBRARY_PATH} -lctf"

56
etc/env/raven/cuda vendored Normal file
View File

@ -0,0 +1,56 @@
mods=(
cuda/11.6
intel/19.1.2
mkl/2020.4
impi/2019.8
autoconf/2.69
automake/1.15
libtool/2.4.6
)
module purge
module load ${mods[@]}
LIB_PATH="${CUDA_HOME}/lib64"
export CUDA_ROOT=${CUDA_HOME}
export CUDA_LDFLAGS="-L${LIB_PATH} -lcuda -L${LIB_PATH} -lcudart -L${LIB_PATH} -lcublas"
export CUDA_CXXFLAGS="-I${CUDA_HOME}/include"
export LD_LIBRARY_PATH="${MKL_HOME}/lib/intel64_lin:${LD_LIBRARY_PATH}"
BLAS_STATIC_PATH="$MKL_HOME/lib/intel64/libmkl_intel_lp64.a"
ls ${LIB_PATH}/libcublas.so
ls ${LIB_PATH}/libcudart.so
cat <<EOF
////////////////////////////////////////////////////////////////////////////////
info
////////////////////////////////////////////////////////////////////////////////
MKL_HOME = $MKL_HOME
BLAS_STATIC_PATH = $BLAS_STATIC_PATH
CUDA_ROOT = ${CUDA_HOME}
CUDA_LDFLAGS = "-L${LIB_PATH} -lcuda -L${LIB_PATH} -lcudart -L${LIB_PATH} -lcublas"
CUDA_CXXFLAGS = "-I${CUDA_HOME}/include"
Consider now runnng the following
../configure \\
--enable-cuda \\
--disable-slice \\
--with-blas="-L\$MKL_HOME/lib/intel64/ -lmkl_intel_lp64 -mkl" \\
CXX=mpiicpc \\
CC=mpiicc \\
MPICXX=mpiicpc
EOF
return

View File

@ -86,7 +86,7 @@ namespace atrip {
ADD_ATTRIBUTE(bool, rankRoundRobin, false)
ADD_ATTRIBUTE(bool, chrono, false)
ADD_ATTRIBUTE(bool, barrier, false)
ADD_ATTRIBUTE(int, maxIterations, 0)
ADD_ATTRIBUTE(size_t, maxIterations, 0)
ADD_ATTRIBUTE(int, iterationMod, -1)
ADD_ATTRIBUTE(int, percentageMod, -1)
ADD_ATTRIBUTE(TuplesDistribution, tuplesDistribution, NAIVE)

View File

@ -11,11 +11,22 @@
#if defined(HAVE_CUDA) && defined(__CUDACC__)
# define __MAYBE_GLOBAL__ __global__
# define __MAYBE_DEVICE__ __device__
# define __MAYBE_HOST__ __host__
# define __INLINE__ __inline__
#else
# define __MAYBE_GLOBAL__
# define __MAYBE_DEVICE__
# define __MAYBE_HOST__
# define __INLINE__ inline
#endif
#if defined(HAVE_CUDA)
#define ACC_FUNCALL(fname, i, j, ...) fname<<<(i), (j)>>>(__VA_ARGS__)
#else
#define ACC_FUNCALL(fname, i, j, ...) fname(__VA_ARGS__)
#endif /* defined(HAVE_CUDA) */
#define _CHECK_CUDA_SUCCESS(message, ...) \
do { \
CUresult result = __VA_ARGS__; \

View File

@ -23,6 +23,8 @@
#include<thrust/device_vector.h>
#endif
#include<atrip/CUDA.hpp>
namespace atrip {
using ABCTuple = std::array<size_t, 3>;
@ -32,21 +34,25 @@ using ABCTuples = std::vector<ABCTuple>;
// [[file:~/cuda/atrip/atrip.org::*Energy][Energy:1]]
template <typename F=double>
double getEnergyDistinct
__MAYBE_GLOBAL__
void getEnergyDistinct
( F const epsabc
, size_t const No
, F* const epsi
, F* const Tijk
, F* const Zijk
, double* energy
);
template <typename F=double>
double getEnergySame
__MAYBE_GLOBAL__
void getEnergySame
( F const epsabc
, size_t const No
, F* const epsi
, F* const Tijk
, F* const Zijk
, double* energy
);
// Energy:1 ends here
@ -97,6 +103,11 @@ void singlesContribution
// -- TIJK
// , DataPtr<F> Tijk
, DataFieldType<F>* Tijk_
#if defined(HAVE_CUDA)
// -- tmp buffers
, DataFieldType<F>* _t_buffer
, DataFieldType<F>* _vhhh
#endif
);
// Doubles contribution:1 ends here

View File

@ -0,0 +1,171 @@
// Copyright 2022 Alejandro Gallo
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OPERATIONS_HPP_
#define OPERATIONS_HPP_
#include <atrip/CUDA.hpp>
#include <atrip/Types.hpp>
#include <atrip/Complex.hpp>
namespace atrip {
namespace acc {
// cuda kernels
template <typename F>
__MAYBE_GLOBAL__
void zeroing(F* a, size_t n) {
F zero = {0};
for (size_t i = 0; i < n; i++) {
a[i] = zero;
}
}
////
template <typename F>
__MAYBE_DEVICE__ __MAYBE_HOST__ __INLINE__
F maybeConjugateScalar(const F &a) { return a; }
#if defined(HAVE_CUDA)
template <>
__MAYBE_DEVICE__ __MAYBE_HOST__ __INLINE__
cuDoubleComplex maybeConjugateScalar(const cuDoubleComplex &a) {
return {a.x, -a.y};
}
#endif /* defined(HAVE_CUDA) */
template <typename F>
__MAYBE_GLOBAL__
void maybeConjugate(F* to, F* from, size_t n) {
for (size_t i = 0; i < n; ++i) {
to[i] = maybeConjugateScalar<F>(from[i]);
}
}
template <typename F>
__MAYBE_DEVICE__ __MAYBE_HOST__
void reorder(F* to, F* from, size_t size, size_t I, size_t J, size_t K) {
size_t idx = 0;
const size_t IDX = I + J*size + K*size*size;
for (size_t k = 0; k < size; k++)
for (size_t j = 0; j < size; j++)
for (size_t i = 0; i < size; i++, idx++)
to[idx] += from[IDX];
}
// Multiplication operation
//////////////////////////////////////////////////////////////////////////////
template <typename F>
__MAYBE_DEVICE__ __MAYBE_HOST__ __INLINE__
F prod(const F &a, const F &b) { return a * b; }
#if defined(HAVE_CUDA)
template <>
__MAYBE_DEVICE__ __MAYBE_HOST__ __INLINE__
cuDoubleComplex prod(const cuDoubleComplex &a, const cuDoubleComplex &b) {
return cuCmul(a, b);
}
#endif /* defined(HAVE_CUDA) */
// Division operation
//////////////////////////////////////////////////////////////////////////////
template <typename F>
__MAYBE_DEVICE__ __MAYBE_HOST__ __INLINE__
F div(const F &a, const F &b) { return a / b; }
#if defined(HAVE_CUDA)
template <>
__MAYBE_DEVICE__ __MAYBE_HOST__ __INLINE__
cuDoubleComplex div(const cuDoubleComplex &a, const cuDoubleComplex &b) {
return cuCdiv(a, b);
}
#endif /* defined(HAVE_CUDA) */
// Real part
//////////////////////////////////////////////////////////////////////////////
template <typename F>
__MAYBE_HOST__ __INLINE__
double real(F &a) { return std::real(a); }
template <>
__MAYBE_DEVICE__ __MAYBE_HOST__ __INLINE__
double real(double &a) {
return a;
}
#if defined(HAVE_CUDA)
template <>
__MAYBE_DEVICE__ __MAYBE_HOST__ __INLINE__
double real(cuDoubleComplex &a) {
return cuCreal(a);
}
#endif /* defined(HAVE_CUDA) */
// Substraction operator
//////////////////////////////////////////////////////////////////////////////
template <typename F>
__MAYBE_DEVICE__ __MAYBE_HOST__ __INLINE__
F sub(const F &a, const F &b) { return a - b; }
#if defined(HAVE_CUDA)
template <>
__MAYBE_DEVICE__ __MAYBE_HOST__ __INLINE__
cuDoubleComplex sub(const cuDoubleComplex &a,
const cuDoubleComplex &b) {
return cuCsub(a, b);
}
#endif /* defined(HAVE_CUDA) */
// Addition operator
//////////////////////////////////////////////////////////////////////////////
template <typename F>
__MAYBE_DEVICE__ __MAYBE_HOST__ __INLINE__
F add(const F &a, const F &b) { return a + b; }
#if defined(HAVE_CUDA)
template <>
__MAYBE_DEVICE__ __MAYBE_HOST__ __INLINE__
cuDoubleComplex add(const cuDoubleComplex &a, const cuDoubleComplex &b) {
return cuCadd(a, b);
}
#endif /* defined(HAVE_CUDA) */
// Sum in place operator
//////////////////////////////////////////////////////////////////////////////
template <typename F>
__MAYBE_DEVICE__ __MAYBE_HOST__
void sum_in_place(F* to, const F* from) { *to += *from; }
#if defined(HAVE_CUDA)
template <>
__MAYBE_DEVICE__ __MAYBE_HOST__
void sum_in_place(cuDoubleComplex* to, const cuDoubleComplex* from) {
to->x += from->x;
to->y += from->y;
}
#endif /* defined(HAVE_CUDA) */
} // namespace acc
} // namespace atrip
#endif

View File

@ -352,7 +352,7 @@ Info info;
// [[file:~/cuda/atrip/atrip.org::*Attributes][Attributes:2]]
DataPtr<F> data;
#if defined(HAVE_CUDA)
#if defined(HAVE_CUDA) && !defined (ATRIP_SOURCES_IN_GPU)
F* mpi_data;
#endif
// Attributes:2 ends here
@ -456,7 +456,7 @@ void unwrapAndMarkReady() {
if (errorCode != MPI_SUCCESS)
throw "Atrip: Unexpected error MPI ERROR";
#if defined(HAVE_CUDA)
#if defined(HAVE_CUDA) && !defined(ATRIP_SOURCES_IN_GPU)
// copy the retrieved mpi data to the device
WITH_CHRONO("cuda:memcpy",
_CHECK_CUDA_SUCCESS("copying mpi data to device",
@ -488,7 +488,7 @@ void unwrapAndMarkReady() {
Slice(size_t size_)
: info({})
, data(DataNullPtr)
#if defined(HAVE_CUDA)
#if defined(HAVE_CUDA) && !defined(ATRIP_SOURCES_IN_GPU)
, mpi_data(nullptr)
#endif
, size(size_)

View File

@ -405,6 +405,7 @@ template <typename F=double>
, sliceSize(std::accumulate(sliceLength.begin(),
sliceLength.end(),
1UL, std::multiplies<size_t>()))
#if defined(ATRIP_SOURCES_IN_GPU)
, sources(rankMap.nSources())
#else
@ -417,6 +418,23 @@ template <typename F=double>
{ // constructor begin
LOG(0,"Atrip") << "INIT SliceUnion: " << name << "\n";
printf("sliceSize %d, number of slices %d\n\n\n", sliceSize, sources.size());
#if defined(ATRIP_SOURCES_IN_GPU)
for (auto& ptr: sources) {
const CUresult sourceError =
cuMemAlloc(&ptr, sizeof(F) * sliceSize);
if (ptr == 0UL) {
throw "UNSUFICCIENT MEMORY ON THE GRAPHIC CARD FOR SOURCES";
}
if (sourceError != CUDA_SUCCESS) {
std::stringstream s;
s << "Error allocating memory for sources "
<< "code " << sourceError << "\n";
throw s.str();
}
}
#endif
for (auto& ptr: sliceBuffers) {
#if defined(HAVE_CUDA)
@ -445,6 +463,34 @@ template <typename F=double>
std::inserter(freePointers, freePointers.begin()),
[](DataPtr<F> ptr) { return ptr; });
#if defined(HAVE_CUDA)
LOG(1,"Atrip") << "warming communication up " << slices.size() << "\n";
WITH_CHRONO("cuda:warmup",
int nRanks=Atrip::np, requestCount=0;
int nSends=sliceBuffers.size()*nRanks;
MPI_Request *requests = (MPI_Request*) malloc(nSends*2 * sizeof(MPI_Request));
MPI_Status *statuses = (MPI_Status*) malloc(nSends*2 * sizeof(MPI_Status));
for (int sliceId=0; sliceId<sliceBuffers.size(); sliceId++){
for (int rankId=0; rankId<nRanks; rankId++){
MPI_Isend((void*)SOURCES_DATA(sources[0]),
sliceSize,
traits::mpi::datatypeOf<F>(),
rankId,
100,
universe,
&requests[requestCount++]);
MPI_Irecv((void*)sliceBuffers[sliceId],
sliceSize,
traits::mpi::datatypeOf<F>(),
rankId,
100,
universe,
&requests[requestCount++]);
}
}
MPI_Waitall(nSends*2, requests, statuses);
)
#endif
LOG(1,"Atrip") << "#slices " << slices.size() << "\n";
@ -527,12 +573,11 @@ template <typename F=double>
if (slice.info.state == Slice<F>::Fetch) { // if-1
// TODO: do it through the slice class
slice.info.state = Slice<F>::Dispatched;
#if defined(HAVE_CUDA)
# if !defined(ATRIP_CUDA_AWARE_MPI) && defined(ATRIP_SOURCES_IN_GPU)
#if defined(HAVE_CUDA) && defined(ATRIP_SOURCES_IN_GPU)
# if !defined(ATRIP_CUDA_AWARE_MPI)
# error "You need CUDA aware MPI to have slices on the GPU"
# endif
slice.mpi_data = (F*)malloc(sizeof(F) * slice.size);
MPI_Irecv(slice.mpi_data,
MPI_Irecv((void*)slice.data,
#else
MPI_Irecv(slice.data,
#endif

View File

@ -202,7 +202,7 @@ Atrip::Output Atrip::run(Atrip::Input<F> const& in) {
_CHECK_CUDA_SUCCESS("Zijk",
cuMemAlloc(&Zijk, sizeof(F) * No * No * No));
#else
std::vector<F> &Tai = _Tai, &epsi = _epsi, &epsa = _epsa;
DataPtr<F> Tai = _Tai.data(), epsi = _epsi.data(), epsa = _epsa.data();
Zijk = (DataFieldType<F>*)malloc(No*No*No * sizeof(DataFieldType<F>));
Tijk = (DataFieldType<F>*)malloc(No*No*No * sizeof(DataFieldType<F>));
#endif
@ -258,6 +258,25 @@ Atrip::Output Atrip::run(Atrip::Input<F> const& in) {
// all tensors
std::vector< SliceUnion<F>* > unions = {&taphh, &hhha, &abph, &abhh, &tabhh};
#ifdef HAVE_CUDA
// TODO: free buffers
DataFieldType<F>* _t_buffer;
DataFieldType<F>* _vhhh;
WITH_CHRONO("double:cuda:alloc",
_CHECK_CUDA_SUCCESS("Allocating _t_buffer",
cuMemAlloc((CUdeviceptr*)&_t_buffer,
No*No*No * sizeof(DataFieldType<F>)));
_CHECK_CUDA_SUCCESS("Allocating _vhhh",
cuMemAlloc((CUdeviceptr*)&_vhhh,
No*No*No * sizeof(DataFieldType<F>)));
)
//const size_t
// bs = Atrip::kernelDimensions.ooo.blocks,
//ths = Atrip::kernelDimensions.ooo.threads;
//cuda::zeroing<<<bs, ths>>>((DataFieldType<F>*)_t_buffer, NoNoNo);
//cuda::zeroing<<<bs, ths>>>((DataFieldType<F>*)_vhhh, NoNoNo);
#endif
// get tuples for the current rank
TuplesDistribution *distribution;
@ -639,7 +658,14 @@ Atrip::Output Atrip::run(Atrip::Input<F> const& in) {
tabhh.unwrapSlice(Slice<F>::AC, abc),
tabhh.unwrapSlice(Slice<F>::BC, abc),
// -- TIJK
(DataFieldType<F>*)Tijk);
(DataFieldType<F>*)Tijk
#if defined(HAVE_CUDA)
// -- tmp buffers
,(DataFieldType<F>*)_t_buffer
,(DataFieldType<F>*)_vhhh
#endif
);
WITH_RANK << iteration << "-th doubles done\n";
))
}
@ -667,7 +693,7 @@ Atrip::Output Atrip::run(Atrip::Input<F> const& in) {
(DataFieldType<F>*)Tai,
#else
singlesContribution<F>(No, Nv, abc[0], abc[1], abc[2],
Tai.data(),
Tai,
#endif
(DataFieldType<F>*)abhh.unwrapSlice(Slice<F>::AB,
abc),
@ -683,31 +709,71 @@ Atrip::Output Atrip::run(Atrip::Input<F> const& in) {
// COMPUTE ENERGY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {{{1
#if defined(ATRIP_ONLY_DGEMM)
if (false)
#endif
#endif /* defined(ATRIP_ONLY_DGEMM) */
if (!isFakeTuple(i)) {
double tupleEnergy(0.);
#if defined(HAVE_CUDA)
double *tupleEnergy;
cuMemAlloc((DataPtr<double>*)&tupleEnergy, sizeof(double));
#else
double _tupleEnergy(0.);
double *tupleEnergy = &_tupleEnergy;
#endif /* defined(HAVE_CUDA) */
int distinct(0);
if (abc[0] == abc[1]) distinct++;
if (abc[1] == abc[2]) distinct--;
const F epsabc(_epsa[abc[0]] + _epsa[abc[1]] + _epsa[abc[2]]);
const double
epsabc = std::real(_epsa[abc[0]] + _epsa[abc[1]] + _epsa[abc[2]]);
DataFieldType<F> _epsabc{epsabc};
// LOG(0, "AtripCUDA") << "doing energy " << i << "distinct " << distinct << "\n";
WITH_CHRONO("energy",
/*
TODO: think about how to do this on the GPU in the best way possible
if ( distinct == 0)
tupleEnergy = getEnergyDistinct<F>(epsabc, No, (F*)epsi, (F*)Tijk, (F*)Zijk);
else
tupleEnergy = getEnergySame<F>(epsabc, No, (F*)epsi, (F*)Tijk, (F*)Zijk);
*/
)
if ( distinct == 0) {
ACC_FUNCALL(getEnergyDistinct<DataFieldType<F>>,
1, 1, // for cuda
_epsabc,
No,
#if defined(HAVE_CUDA)
(DataFieldType<F>*)epsi,
(DataFieldType<F>*)Tijk,
(DataFieldType<F>*)Zijk,
#else
epsi,
Tijk,
Zijk,
#endif
tupleEnergy);
} else {
ACC_FUNCALL(getEnergySame<DataFieldType<F>>,
1, 1, // for cuda
_epsabc,
No,
#if defined(HAVE_CUDA)
(DataFieldType<F>*)epsi,
(DataFieldType<F>*)Tijk,
(DataFieldType<F>*)Zijk,
#else
epsi,
Tijk,
Zijk,
#endif
tupleEnergy);
})
#if defined(HAVE_CUDA)
double host_tuple_energy;
cuMemcpyDtoH((void*)&host_tuple_energy,
(DataPtr<double>)tupleEnergy,
sizeof(double));
#else
double host_tuple_energy = *tupleEnergy;
#endif /* defined(HAVE_CUDA) */
#if defined(HAVE_OCD) || defined(ATRIP_PRINT_TUPLES)
tupleEnergies[abc] = tupleEnergy;
tupleEnergies[abc] = host_tuple_energy;
#endif
energy += tupleEnergy;
energy += host_tuple_energy;
}
@ -773,6 +839,8 @@ Atrip::Output Atrip::run(Atrip::Input<F> const& in) {
Atrip::chrono["iterations"].stop();
// ITERATION END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%{{{1
if (in.maxIterations != 0 && i >= in.maxIterations) break;
}
// END OF MAIN LOOP

View File

@ -16,96 +16,13 @@
#include<atrip/Equations.hpp>
#include<atrip/CUDA.hpp>
#include<atrip/Operations.hpp>
namespace atrip {
// Prolog:2 ends here
#ifdef HAVE_CUDA
namespace cuda {
// cuda kernels
template <typename F>
__global__
void zeroing(F* a, size_t n) {
F zero = {0};
for (size_t i = 0; i < n; i++) {
a[i] = zero;
}
}
////
template <typename F>
__device__
F maybeConjugateScalar(const F a);
template <>
__device__
double maybeConjugateScalar(const double a) { return a; }
template <>
__device__
cuDoubleComplex
maybeConjugateScalar(const cuDoubleComplex a) {
return {a.x, -a.y};
}
template <typename F>
__global__
void maybeConjugate(F* to, F* from, size_t n) {
for (size_t i = 0; i < n; ++i) {
to[i] = maybeConjugateScalar<F>(from[i]);
}
}
template <typename F>
__global__
void reorder(F* to, F* from, size_t size, size_t I, size_t J, size_t K) {
size_t idx = 0;
const size_t IDX = I + J*size + K*size*size;
for (size_t k = 0; k < size; k++)
for (size_t j = 0; j < size; j++)
for (size_t i = 0; i < size; i++, idx++)
to[idx] += from[IDX];
}
// I mean, really CUDA... really!?
template <typename F>
__device__
F multiply(const F &a, const F &b);
template <>
__device__
double multiply(const double &a, const double &b) { return a * b; }
template <>
__device__
cuDoubleComplex multiply(const cuDoubleComplex &a, const cuDoubleComplex &b) {
return
{a.x * b.x - a.y * b.y,
a.x * b.y + a.y * b.x};
}
template <typename F>
__device__
void sum_in_place(F* to, const F* from);
template <>
__device__
void sum_in_place(double* to, const double *from) { *to += *from; }
template <>
__device__
void sum_in_place(cuDoubleComplex* to, const cuDoubleComplex* from) {
to->x += from->x;
to->y += from->y;
}
};
#endif
#if defined(HAVE_CUDA)
#define FOR_K() \
for (size_t kmin = blockIdx.x * blockDim.x + threadIdx.x, \
@ -133,7 +50,7 @@ namespace cuda {
_REORDER_BODY_(__VA_ARGS__) \
}
#if defined(HAVE_CUDA)
#define GO(__TO, __FROM) cuda::sum_in_place<F>(&__TO, &__FROM);
#define GO(__TO, __FROM) acc::sum_in_place<F>(&__TO, &__FROM);
#else
#define GO(__TO, __FROM) __TO += __FROM;
#endif
@ -179,162 +96,205 @@ namespace cuda {
#undef _IJK_
#undef GO
#if defined(HAVE_CUDA)
# define MIN(a, b) min((a), (b))
#else
# define MIN(a, b) std::min((a), (b))
#endif
// [[file:~/cuda/atrip/atrip.org::*Energy][Energy:2]]
template <typename F>
double getEnergyDistinct
__MAYBE_GLOBAL__
void getEnergyDistinct
( F const epsabc
, size_t const No
, F* const epsi
, F* const Tijk
, F* const Zijk
, double* energy
) {
constexpr size_t blockSize=16;
F energy(0.);
F _energy = {0.};
for (size_t kk=0; kk<No; kk+=blockSize){
const size_t kend( std::min(No, kk+blockSize) );
const size_t kend( MIN(No, kk+blockSize) );
for (size_t jj(kk); jj<No; jj+=blockSize){
const size_t jend( std::min( No, jj+blockSize) );
const size_t jend( MIN( No, jj+blockSize) );
for (size_t ii(jj); ii<No; ii+=blockSize){
const size_t iend( std::min( No, ii+blockSize) );
const size_t iend( MIN( No, ii+blockSize) );
for (size_t k(kk); k < kend; k++){
const F ek(epsi[k]);
const size_t jstart = jj > k ? jj : k;
for (size_t j(jstart); j < jend; j++){
F const ej(epsi[j]);
F const facjk = j == k ? F(0.5) : F(1.0);
F const facjk = j == k ? F{0.5} : F{1.0};
size_t istart = ii > j ? ii : j;
for (size_t i(istart); i < iend; i++){
const F
ei(epsi[i])
, facij = i == j ? F(0.5) : F(1.0)
, denominator(epsabc - ei - ej - ek)
, facij = i == j ? F{0.5} : F{1.0}
, eijk(acc::add(acc::add(ei, ej), ek))
, denominator(acc::sub(epsabc, eijk))
, U(Zijk[i + No*j + No*No*k])
, V(Zijk[i + No*k + No*No*j])
, W(Zijk[j + No*i + No*No*k])
, X(Zijk[j + No*k + No*No*i])
, Y(Zijk[k + No*i + No*No*j])
, Z(Zijk[k + No*j + No*No*i])
, A(maybeConjugate<F>(Tijk[i + No*j + No*No*k]))
, B(maybeConjugate<F>(Tijk[i + No*k + No*No*j]))
, C(maybeConjugate<F>(Tijk[j + No*i + No*No*k]))
, D(maybeConjugate<F>(Tijk[j + No*k + No*No*i]))
, E(maybeConjugate<F>(Tijk[k + No*i + No*No*j]))
, _F(maybeConjugate<F>(Tijk[k + No*j + No*No*i]))
, value
= 3.0 * ( A * U
+ B * V
+ C * W
+ D * X
+ E * Y
+ _F * Z )
+ ( ( U + X + Y )
- 2.0 * ( V + W + Z )
) * ( A + D + E )
+ ( ( V + W + Z )
- 2.0 * ( U + X + Y )
) * ( B + C + _F )
, A(acc::maybeConjugateScalar(Tijk[i + No*j + No*No*k]))
, B(acc::maybeConjugateScalar(Tijk[i + No*k + No*No*j]))
, C(acc::maybeConjugateScalar(Tijk[j + No*i + No*No*k]))
, D(acc::maybeConjugateScalar(Tijk[j + No*k + No*No*i]))
, E(acc::maybeConjugateScalar(Tijk[k + No*i + No*No*j]))
, _F(acc::maybeConjugateScalar(Tijk[k + No*j + No*No*i]))
, AU = acc::prod(A, U)
, BV = acc::prod(B, V)
, CW = acc::prod(C, W)
, DX = acc::prod(D, X)
, EY = acc::prod(E, Y)
, FZ = acc::prod(_F, Z)
, UXY = acc::add(U, acc::add(X, Y))
, VWZ = acc::add(V, acc::add(W, Z))
, ADE = acc::add(A, acc::add(D, E))
, BCF = acc::add(B, acc::add(C, _F))
// I just might as well write this in CL
, _first = acc::add(AU,
acc::add(BV,
acc::add(CW,
acc::add(DX,
acc::add(EY, FZ)))))
, _second = acc::prod(acc::sub(UXY,
acc::prod(F{-2.0}, VWZ)),
ADE)
, _third = acc::prod(acc::sub(VWZ,
acc::prod(F{-2.0}, UXY)),
BCF)
, value = acc::add(acc::prod(F{3.0}, _first),
acc::add(_second,
_third))
, _loop_energy = acc::prod(acc::prod(F{2.0}, value),
acc::div(acc::prod(facjk, facij),
denominator))
;
energy += 2.0 * value / denominator * facjk * facij;
acc::sum_in_place(&_energy, &_loop_energy);
} // i
} // j
} // k
} // ii
} // jj
} // kk
return std::real(energy);
const double real_part = acc::real(_energy);
acc::sum_in_place(energy, &real_part);
}
template <typename F>
double getEnergySame
__MAYBE_GLOBAL__
void getEnergySame
( F const epsabc
, size_t const No
, F* const epsi
, F* const Tijk
, F* const Zijk
, double* energy
) {
constexpr size_t blockSize = 16;
F energy = F(0.);
F _energy = F{0.};
for (size_t kk=0; kk<No; kk+=blockSize){
const size_t kend( std::min( kk+blockSize, No) );
const size_t kend( MIN( kk+blockSize, No) );
for (size_t jj(kk); jj<No; jj+=blockSize){
const size_t jend( std::min( jj+blockSize, No) );
const size_t jend( MIN( jj+blockSize, No) );
for (size_t ii(jj); ii<No; ii+=blockSize){
const size_t iend( std::min( ii+blockSize, No) );
const size_t iend( MIN( ii+blockSize, No) );
for (size_t k(kk); k < kend; k++){
const F ek(epsi[k]);
const size_t jstart = jj > k ? jj : k;
for(size_t j(jstart); j < jend; j++){
const F facjk( j == k ? F(0.5) : F(1.0));
const F facjk( j == k ? F{0.5} : F{1.0});
const F ej(epsi[j]);
const size_t istart = ii > j ? ii : j;
for(size_t i(istart); i < iend; i++){
const F
ei(epsi[i])
, facij ( i==j ? F(0.5) : F(1.0))
, denominator(epsabc - ei - ej - ek)
, facij ( i==j ? F{0.5} : F{1.0})
, eijk(acc::add(acc::add(ei, ej), ek))
, denominator(acc::sub(epsabc, eijk))
, U(Zijk[i + No*j + No*No*k])
, V(Zijk[j + No*k + No*No*i])
, W(Zijk[k + No*i + No*No*j])
, A(maybeConjugate<F>(Tijk[i + No*j + No*No*k]))
, B(maybeConjugate<F>(Tijk[j + No*k + No*No*i]))
, C(maybeConjugate<F>(Tijk[k + No*i + No*No*j]))
, value
= F(3.0) * ( A * U
+ B * V
+ C * W
)
- ( A + B + C ) * ( U + V + W )
, A(acc::maybeConjugateScalar(Tijk[i + No*j + No*No*k]))
, B(acc::maybeConjugateScalar(Tijk[j + No*k + No*No*i]))
, C(acc::maybeConjugateScalar(Tijk[k + No*i + No*No*j]))
, ABC = acc::add(A, acc::add(B, C))
, UVW = acc::add(U, acc::add(V, W))
, AU = acc::prod(A, U)
, BV = acc::prod(B, V)
, CW = acc::prod(C, W)
, AU_and_BV_and_CW = acc::add(acc::add(AU, BV), CW)
, value = acc::sub(acc::prod(F{3.0}, AU_and_BV_and_CW),
acc::prod(ABC, UVW))
, _loop_energy = acc::prod(acc::prod(F{2.0}, value),
acc::div(acc::prod(facjk, facij),
denominator))
;
energy += F(2.0) * value / denominator * facjk * facij;
acc::sum_in_place(&_energy, &_loop_energy);
} // i
} // j
} // k
} // ii
} // jj
} // kk
return std::real(energy);
const double real_part = acc::real(_energy);
acc::sum_in_place(energy, &real_part);
}
// Energy:2 ends here
// [[file:~/cuda/atrip/atrip.org::*Energy][Energy:3]]
// instantiate double
template
double getEnergyDistinct
( double const epsabc
__MAYBE_GLOBAL__
void getEnergyDistinct
( DataFieldType<double> const epsabc
, size_t const No
, double* const epsi
, double* const Tijk
, double* const Zijk
, DataFieldType<double>* const epsi
, DataFieldType<double>* const Tijk
, DataFieldType<double>* const Zijk
, DataFieldType<double>* energy
);
template
double getEnergySame
( double const epsabc
__MAYBE_GLOBAL__
void getEnergySame
( DataFieldType<double> const epsabc
, size_t const No
, double* const epsi
, double* const Tijk
, double* const Zijk
, DataFieldType<double>* const epsi
, DataFieldType<double>* const Tijk
, DataFieldType<double>* const Zijk
, DataFieldType<double>* energy
);
// instantiate Complex
template
double getEnergyDistinct
( Complex const epsabc
__MAYBE_GLOBAL__
void getEnergyDistinct
( DataFieldType<Complex> const epsabc
, size_t const No
, Complex* const epsi
, Complex* const Tijk
, Complex* const Zijk
, DataFieldType<Complex>* const epsi
, DataFieldType<Complex>* const Tijk
, DataFieldType<Complex>* const Zijk
, DataFieldType<double>* energy
);
template
double getEnergySame
( Complex const epsabc
__MAYBE_GLOBAL__
void getEnergySame
( DataFieldType<Complex> const epsabc
, size_t const No
, Complex* const epsi
, Complex* const Tijk
, Complex* const Zijk
, DataFieldType<Complex>* const epsi
, DataFieldType<Complex>* const Tijk
, DataFieldType<Complex>* const Zijk
, DataFieldType<double>* energy
);
// Energy:3 ends here
@ -360,18 +320,26 @@ double getEnergySame
const size_t ijk = i + j*No + k*NoNo;
#ifdef HAVE_CUDA
#define GO(__TPH, __VABIJ) \
{ \
const DataFieldType<F> product \
= cuda::multiply<DataFieldType<F>>((__TPH), (__VABIJ)); \
cuda::sum_in_place<DataFieldType<F>>(&Zijk[ijk], &product); \
}
do { \
const DataFieldType<F> \
product = acc::prod<DataFieldType<F>>((__TPH), \
(__VABIJ)); \
acc::sum_in_place<DataFieldType<F>>(&Zijk[ijk], \
&product); \
} while (0)
#else
# define GO(__TPH, __VABIJ) Zijk[ijk] += (__TPH) * (__VABIJ);
#define GO(__TPH, __VABIJ) Zijk[ijk] += (__TPH) * (__VABIJ)
#endif
GO(Tph[ a + i * Nv ], VBCij[ j + k * No ])
GO(Tph[ b + j * Nv ], VACij[ i + k * No ])
GO(Tph[ c + k * Nv ], VABij[ i + j * No ])
GO(Tph[ a + i * Nv ], VBCij[ j + k * No ]);
GO(Tph[ b + j * Nv ], VACij[ i + k * No ]);
GO(Tph[ c + k * Nv ], VABij[ i + j * No ]);
#undef GO
} // for loop j
}
@ -433,9 +401,15 @@ double getEnergySame
// -- TIJK
// , DataPtr<F> Tijk_
, DataFieldType<F>* Tijk_
#if defined(HAVE_CUDA)
// -- tmp buffers
, DataFieldType<F>* _t_buffer
, DataFieldType<F>* _vhhh
#endif
) {
const size_t NoNo = No*No;
const size_t a = abc[0], b = abc[1], c = abc[2]
, NoNo = No*No
;
DataFieldType<F>* Tijk = (DataFieldType<F>*)Tijk_;
@ -480,7 +454,7 @@ double getEnergySame
)
#define MAYBE_CONJ(_conj, _buffer) \
do { \
cuda::maybeConjugate<<< \
acc::maybeConjugate<<< \
\
Atrip::kernelDimensions.ooo.blocks, \
\
@ -549,23 +523,23 @@ double getEnergySame
F one{1.0}, m_one{-1.0}, zero{0.0};
const size_t NoNoNo = No*NoNo;
#ifdef HAVE_CUDA
DataFieldType<F>* _t_buffer;
DataFieldType<F>* _vhhh;
WITH_CHRONO("double:cuda:alloc",
_CHECK_CUDA_SUCCESS("Allocating _t_buffer",
cuMemAlloc((CUdeviceptr*)&_t_buffer,
NoNoNo * sizeof(DataFieldType<F>)));
_CHECK_CUDA_SUCCESS("Allocating _vhhh",
cuMemAlloc((CUdeviceptr*)&_vhhh,
NoNoNo * sizeof(DataFieldType<F>)));
)
// DataFieldType<F>* _t_buffer;
// DataFieldType<F>* _vhhh;
// WITH_CHRONO("double:cuda:alloc",
// _CHECK_CUDA_SUCCESS("Allocating _t_buffer",
// cuMemAlloc((CUdeviceptr*)&_t_buffer,
// NoNoNo * sizeof(DataFieldType<F>)));
// _CHECK_CUDA_SUCCESS("Allocating _vhhh",
// cuMemAlloc((CUdeviceptr*)&_vhhh,
// NoNoNo * sizeof(DataFieldType<F>)));
// )
#if !defined(ATRIP_ONLY_DGEMM)
// we still have to zero this
const size_t
bs = Atrip::kernelDimensions.ooo.blocks,
ths = Atrip::kernelDimensions.ooo.threads;
#if !defined(ATRIP_ONLY_DGEMM)
cuda::zeroing<<<bs, ths>>>((DataFieldType<F>*)_t_buffer, NoNoNo);
cuda::zeroing<<<bs, ths>>>((DataFieldType<F>*)_vhhh, NoNoNo);
acc::zeroing<<<bs, ths>>>((DataFieldType<F>*)_t_buffer, NoNoNo);
acc::zeroing<<<bs, ths>>>((DataFieldType<F>*)_vhhh, NoNoNo);
#endif
#else
@ -581,15 +555,17 @@ double getEnergySame
// Set Tijk to zero
#if defined(HAVE_CUDA) && !defined(ATRIP_ONLY_DGEMM)
WITH_CHRONO("double:reorder",
cuda::zeroing<<<bs, ths>>>((DataFieldType<F>*)Tijk,
acc::zeroing<<<bs, ths>>>((DataFieldType<F>*)Tijk,
NoNoNo);
)
#else
#endif
#if !defined(HAVE_CUDA)
WITH_CHRONO("double:reorder",
for (size_t k = 0; k < NoNoNo; k++) {
Tijk[k] = DataFieldType<F>{0.0};
})
#endif
#endif /* !defined(HAVE_CUDA) */
#if defined(ATRIP_ONLY_DGEMM)
@ -597,7 +573,7 @@ double getEnergySame
#undef REORDER
#define MAYBE_CONJ(a, b) do {} while(0)
#define REORDER(i, j, k) do {} while(0)
#endif
#endif /* defined(ATRIP_ONLY_DGEMM) */
// HOLES
WITH_CHRONO("doubles:holes",
@ -681,16 +657,16 @@ double getEnergySame
#ifdef HAVE_CUDA
// we need to synchronize here since we need
// the Tijk for next process in the pipeline
_CHECK_CUDA_SUCCESS("Synchronizing",
cuCtxSynchronize());
_CHECK_CUDA_SUCCESS("Freeing _vhhh",
cuMemFree((CUdeviceptr)_vhhh));
_CHECK_CUDA_SUCCESS("Freeing _t_buffer",
cuMemFree((CUdeviceptr)_t_buffer));
//_CHECK_CUDA_SUCCESS("Synchronizing",
// cuCtxSynchronize());
//_CHECK_CUDA_SUCCESS("Freeing _vhhh",
// cuMemFree((CUdeviceptr)_vhhh));
//_CHECK_CUDA_SUCCESS("Freeing _t_buffer",
// cuMemFree((CUdeviceptr)_t_buffer));
#else
free(_vhhh);
free(_t_buffer);
#endif
#endif /* defined(HAVE_CUDA) */
}
#undef REORDER
@ -741,7 +717,7 @@ double getEnergySame
}
}
#endif
#endif /* defined(ATRIP_USE_DGEMM) */
}
@ -773,6 +749,12 @@ double getEnergySame
, DataPtr<double> const TBChh
// -- TIJK
, DataFieldType<double>* Tijk
#if defined(HAVE_CUDA)
// -- tmp buffers
, DataFieldType<double>* _t_buffer
, DataFieldType<double>* _vhhh
#endif
);
template
@ -801,6 +783,12 @@ double getEnergySame
, DataPtr<Complex> const TBChh
// -- TIJK
, DataFieldType<Complex>* Tijk
#if defined(HAVE_CUDA)
// -- tmp buffers
, DataFieldType<Complex>* _t_buffer
, DataFieldType<Complex>* _vhhh
#endif
);
// Doubles contribution:2 ends here

View File

@ -98,10 +98,27 @@ EOF
create_config $tmp only-dgemm
rm $tmp
#
# begin doc
#
# - slices-on-gpu-only-dgemm ::
# - cuda-only-dgemm ::
# This is the naive CUDA implementation compiling only the dgemm parts
# of the compute.
#
# end doc
tmp=`mktemp`
cat <<EOF > $tmp
--enable-cuda
--enable-only-dgemm
--disable-slice
EOF
create_config $tmp cuda-only-dgemm
rm $tmp
# begin doc
#
# - cuda-slices-on-gpu-only-dgemm ::
# This configuration tests that slices reside completely on the gpu
# and it should use a CUDA aware MPI implementation.
# It also only uses the routines that involve dgemm.
@ -117,7 +134,7 @@ cat <<EOF > $tmp
--disable-slice
EOF
create_config $tmp sources-in-gpu
create_config $tmp cuda-slices-on-gpu-only-dgemm
rm $tmp
############################################################