Compare commits

...

7 Commits

5 changed files with 234 additions and 78 deletions

View File

@ -24,20 +24,13 @@ namespace acc {
// cuda kernels
template <typename F>
__MAYBE_GLOBAL__
void zeroing(F* a, size_t n) {
F zero = {0};
for (size_t i = 0; i < n; i++) {
a[i] = zero;
}
}
////
template <typename F>
__MAYBE_DEVICE__ __MAYBE_HOST__ __INLINE__
F maybeConjugateScalar(const F &a) { return a; }
// TODO: instantiate for std::complex<double>
#if defined(HAVE_CUDA)
template <>
__MAYBE_DEVICE__ __MAYBE_HOST__ __INLINE__

View File

@ -200,7 +200,7 @@ template <typename F=double>
: Slice<F>::Fetch
;
if (blank.info.state == Slice<F>::SelfSufficient) {
#if defined(HAVE_CUDA)
#if defined(HAVE_CUDA) && !defined(ATRIP_SOURCES_IN_GPU)
const size_t _size = sizeof(F) * sliceSize;
// TODO: this is code duplication with downstairs
if (freePointers.size() == 0) {
@ -221,7 +221,6 @@ template <typename F=double>
(void*)SOURCES_DATA(sources[from.source]),
sizeof(F) * sliceSize));
))
#else
blank.data = SOURCES_DATA(sources[from.source]);
#endif
@ -388,6 +387,22 @@ template <typename F=double>
}
}
static size_t
getSize(const std::vector<size_t> sliceLength,
const std::vector<size_t> paramLength,
const size_t np,
const MPI_Comm global_world) {
const RankMap<F> rankMap(paramLength, np, global_world);
const size_t
nSources = rankMap.nSources(),
sliceSize = std::accumulate(sliceLength.begin(),
sliceLength.end(),
1UL,
std::multiplies<size_t>());
return nSources * sliceSize;
}
// CONSTRUCTOR
SliceUnion( std::vector<typename Slice<F>::Type> sliceTypes_
, std::vector<size_t> sliceLength_
@ -574,12 +589,15 @@ template <typename F=double>
// TODO: do it through the slice class
slice.info.state = Slice<F>::Dispatched;
#if defined(HAVE_CUDA) && defined(ATRIP_SOURCES_IN_GPU)
# if !defined(ATRIP_CUDA_AWARE_MPI)
# if !defined(ATRIP_CUDA_AWARE_MPI)
# error "You need CUDA aware MPI to have slices on the GPU"
# endif
MPI_Irecv((void*)slice.data,
#elif defined(HAVE_CUDA) && !defined(ATRIP_SOURCES_IN_GPU)
slice.mpi_data = (F*)malloc(sizeof(F) * slice.size);
MPI_Irecv(slice.mpi_data,
#else
MPI_Irecv(slice.data,
MPI_Irecv((void*)slice.data,
#endif
slice.size,
traits::mpi::datatypeOf<F>(),

View File

@ -160,9 +160,9 @@ Atrip::Output Atrip::run(Atrip::Input<F> const& in) {
LOG(0,"Atrip") << "ooo blocks: "
<< Atrip::kernelDimensions.ooo.blocks << "\n";
<< Atrip::kernelDimensions.ooo.blocks << "\n";
LOG(0,"Atrip") << "ooo threads per block: "
<< Atrip::kernelDimensions.ooo.threads << "\n";
<< Atrip::kernelDimensions.ooo.threads << "\n";
#endif
// allocate the three scratches, see piecuch
@ -235,11 +235,54 @@ Atrip::Output Atrip::run(Atrip::Input<F> const& in) {
MPI_Comm_size(child_comm, &child_size);
}
// a, b, c, d, e, f and P => Nv
// H => No
// total_source_sizes contains a list of the number of elements
// in all sources of every tensor union, therefore nSlices * sliceSize
const std::vector<size_t> total_source_sizes = {
// ABPH
SliceUnion<F>::getSize({Nv, No}, {Nv, Nv}, (size_t)np, universe),
// ABHH
SliceUnion<F>::getSize({No, No}, {Nv, Nv}, (size_t)np, universe),
// TABHH
SliceUnion<F>::getSize({No, No}, {Nv, Nv}, (size_t)np, universe),
// TAPHH
SliceUnion<F>::getSize({Nv, No, No}, {Nv}, (size_t)np, universe),
// HHHA
SliceUnion<F>::getSize({No, No, No}, {Nv}, (size_t)np, universe),
};
const size_t
total_source_size = sizeof(DataFieldType<F>)
* std::accumulate(total_source_sizes.begin(),
total_source_sizes.end(),
0UL);
#if defined(HAVE_CUDA)
DataPtr<F> all_sources_pointer;
cuMemAlloc(&all_sources_pointer, total_source_size);
#else
DataPtr<F>
all_sources_pointer = (DataPtr<F>)malloc(total_source_size);
#endif
size_t _source_pointer_idx = 0;
// BUILD SLICES PARAMETRIZED BY NV x NV =============================={{{1
WITH_CHRONO("nv-nv-slices",
LOG(0,"Atrip") << "building NV x NV slices\n";
// TODO
// DataPtr<F> offseted_pointer = all_sources_pointer
// * total_source_sizes[_source_pointer_idx++];
ABPH<F> abph(*in.Vppph, (size_t)No, (size_t)Nv, (size_t)np, child_comm, universe);
// TODO
// DataPtr<F> offseted_pointer = all_sources_pointer
// * total_source_sizes[_source_pointer_idx++];
ABHH<F> abhh(*in.Vpphh, (size_t)No, (size_t)Nv, (size_t)np, child_comm, universe);
// TODO
// DataPtr<F> offseted_pointer = all_sources_pointer
// * total_source_sizes[_source_pointer_idx++];
TABHH<F> tabhh(*in.Tpphh, (size_t)No, (size_t)Nv, (size_t)np, child_comm, universe);
)
@ -251,7 +294,13 @@ Atrip::Output Atrip::run(Atrip::Input<F> const& in) {
// BUILD SLICES PARAMETRIZED BY NV ==================================={{{1
WITH_CHRONO("nv-slices",
LOG(0,"Atrip") << "building NV slices\n";
// TODO
// DataPtr<F> offseted_pointer = all_sources_pointer
// * total_source_sizes[_source_pointer_idx++];
TAPHH<F> taphh(*in.Tpphh, (size_t)No, (size_t)Nv, (size_t)np, child_comm, universe);
// TODO
// DataPtr<F> offseted_pointer = all_sources_pointer
// * total_source_sizes[_source_pointer_idx++];
HHHA<F> hhha(*in.Vhhhp, (size_t)No, (size_t)Nv, (size_t)np, child_comm, universe);
)
@ -903,5 +952,5 @@ Atrip::Output Atrip::run(Atrip::Input<F> const& in) {
}
// instantiate
template Atrip::Output Atrip::run(Atrip::Input<double> const& in);
template Atrip::Output Atrip::run(Atrip::Input<Complex> const& in);
// template Atrip::Output Atrip::run(Atrip::Input<Complex> const& in);
// Main:1 ends here

View File

@ -21,11 +21,6 @@ namespace atrip {
template <> double maybeConjugate(const double a) { return a; }
template <> Complex maybeConjugate(const Complex a) { return std::conj(a); }
#if defined(HAVE_CUDA)
#endif
namespace traits {
template <typename F> bool isComplex() { return false; }
template <> bool isComplex<double>() { return false; }

View File

@ -13,6 +13,8 @@
// limitations under the License.
// [[file:~/cuda/atrip/atrip.org::*Prolog][Prolog:2]]
#include <cstring>
#include<atrip/Equations.hpp>
#include<atrip/CUDA.hpp>
@ -25,11 +27,8 @@ namespace atrip {
#if defined(HAVE_CUDA)
#define FOR_K() \
for (size_t kmin = blockIdx.x * blockDim.x + threadIdx.x, \
k = kmin, \
idx = kmin * size * size * size; \
k < (kmin < size) ? kmin + 1 : size; \
k++)
const size_t k = blockIdx.x * blockDim.x + threadIdx.x; \
size_t idx = k*size*size;
#else
#define FOR_K() for (size_t k=0, idx=0; k < size; k++)
#endif
@ -102,6 +101,7 @@ namespace atrip {
# define MIN(a, b) std::min((a), (b))
#endif
#if defined(ATRIP_NEW_ENERGY)
// [[file:~/cuda/atrip/atrip.org::*Energy][Energy:2]]
template <typename F>
@ -250,6 +250,131 @@ void getEnergySame
}
// Energy:2 ends here
#else
// [[file:~/cuda/atrip/atrip.org::*Energy][Energy:2]]
template <typename F>
__MAYBE_GLOBAL__
void getEnergyDistinct
( F const epsabc
, size_t const No
, F* const epsi
, F* const Tijk
, F* const Zijk
, double* _energy
) {
constexpr size_t blockSize=16;
F energy(0.);
for (size_t kk=0; kk<No; kk+=blockSize){
const size_t kend( MIN(No, kk+blockSize) );
for (size_t jj(kk); jj<No; jj+=blockSize){
const size_t jend( MIN( No, jj+blockSize) );
for (size_t ii(jj); ii<No; ii+=blockSize){
const size_t iend( MIN( No, ii+blockSize) );
for (size_t k(kk); k < kend; k++){
const F ek(epsi[k]);
const size_t jstart = jj > k ? jj : k;
for (size_t j(jstart); j < jend; j++){
F const ej(epsi[j]);
F const facjk = j == k ? F(0.5) : F(1.0);
size_t istart = ii > j ? ii : j;
for (size_t i(istart); i < iend; i++){
const F
ei(epsi[i])
, facij = i == j ? F(0.5) : F(1.0)
, denominator(epsabc - ei - ej - ek)
, U(Zijk[i + No*j + No*No*k])
, V(Zijk[i + No*k + No*No*j])
, W(Zijk[j + No*i + No*No*k])
, X(Zijk[j + No*k + No*No*i])
, Y(Zijk[k + No*i + No*No*j])
, Z(Zijk[k + No*j + No*No*i])
, A(acc::maybeConjugateScalar<F>(Tijk[i + No*j + No*No*k]))
, B(acc::maybeConjugateScalar<F>(Tijk[i + No*k + No*No*j]))
, C(acc::maybeConjugateScalar<F>(Tijk[j + No*i + No*No*k]))
, D(acc::maybeConjugateScalar<F>(Tijk[j + No*k + No*No*i]))
, E(acc::maybeConjugateScalar<F>(Tijk[k + No*i + No*No*j]))
, _F(acc::maybeConjugateScalar<F>(Tijk[k + No*j + No*No*i]))
, value
= 3.0 * ( A * U
+ B * V
+ C * W
+ D * X
+ E * Y
+ _F * Z )
+ ( ( U + X + Y )
- 2.0 * ( V + W + Z )
) * ( A + D + E )
+ ( ( V + W + Z )
- 2.0 * ( U + X + Y )
) * ( B + C + _F )
;
energy += 2.0 * value / denominator * facjk * facij;
} // i
} // j
} // k
} // ii
} // jj
} // kk
*_energy = acc::real(energy);
}
template <typename F>
__MAYBE_GLOBAL__
void getEnergySame
( F const epsabc
, size_t const No
, F* const epsi
, F* const Tijk
, F* const Zijk
, double* _energy
) {
constexpr size_t blockSize = 16;
F energy = F(0.);
for (size_t kk=0; kk<No; kk+=blockSize){
const size_t kend( MIN( kk+blockSize, No) );
for (size_t jj(kk); jj<No; jj+=blockSize){
const size_t jend( MIN( jj+blockSize, No) );
for (size_t ii(jj); ii<No; ii+=blockSize){
const size_t iend( MIN( ii+blockSize, No) );
for (size_t k(kk); k < kend; k++){
const F ek(epsi[k]);
const size_t jstart = jj > k ? jj : k;
for(size_t j(jstart); j < jend; j++){
const F facjk( j == k ? F(0.5) : F(1.0));
const F ej(epsi[j]);
const size_t istart = ii > j ? ii : j;
for(size_t i(istart); i < iend; i++){
const F
ei(epsi[i])
, facij ( i==j ? F(0.5) : F(1.0))
, denominator(epsabc - ei - ej - ek)
, U(Zijk[i + No*j + No*No*k])
, V(Zijk[j + No*k + No*No*i])
, W(Zijk[k + No*i + No*No*j])
, A(acc::maybeConjugateScalar<F>(Tijk[i + No*j + No*No*k]))
, B(acc::maybeConjugateScalar<F>(Tijk[j + No*k + No*No*i]))
, C(acc::maybeConjugateScalar<F>(Tijk[k + No*i + No*No*j]))
, value
= F(3.0) * ( A * U
+ B * V
+ C * W
)
- ( A + B + C ) * ( U + V + W )
;
energy += F(2.0) * value / denominator * facjk * facij;
} // i
} // j
} // k
} // ii
} // jj
} // kk
*_energy = acc::real(energy);
}
// Energy:2 ends here
#endif /* defined(ATRIP_NEW_ENERGY) */
// [[file:~/cuda/atrip/atrip.org::*Energy][Energy:3]]
// instantiate double
template
@ -274,6 +399,8 @@ void getEnergySame
, DataFieldType<double>* energy
);
// TODO: put this back in
#if defined(ATRIP_WITH_COMPLEX)
// instantiate Complex
template
__MAYBE_GLOBAL__
@ -297,6 +424,7 @@ void getEnergySame
, DataFieldType<double>* energy
);
// Energy:3 ends here
#endif
// [[file:~/cuda/atrip/atrip.org::*Singles%20contribution][Singles contribution:2]]
template <typename F> __MAYBE_GLOBAL__
@ -416,7 +544,7 @@ void getEnergySame
#if defined(ATRIP_USE_DGEMM)
#if defined(HAVE_CUDA)
#define REORDER(__II, __JJ, __KK) \
reorder<<<bs, ths>>>(reorder_proxy< \
reorder<<<1, No>>>(reorder_proxy< \
DataFieldType<F>, \
__II ## __JJ ## __KK \
>{}, \
@ -454,13 +582,8 @@ void getEnergySame
)
#define MAYBE_CONJ(_conj, _buffer) \
do { \
acc::maybeConjugate<<< \
\
Atrip::kernelDimensions.ooo.blocks, \
\
Atrip::kernelDimensions.ooo.threads \
\
>>>((DataFieldType<F>*)_conj, \
acc::maybeConjugate<<<1, 1 \
>>>((DataFieldType<F>*)_conj, \
(DataFieldType<F>*)_buffer, \
NoNoNo); \
} while (0)
@ -511,61 +634,39 @@ void getEnergySame
_t_buffer, \
(int const*)&NoNo \
)
#define MAYBE_CONJ(_conj, _buffer) \
do { \
for (size_t __i = 0; __i < NoNoNo; ++__i) { \
_conj[__i] \
= maybeConjugate<F>(_buffer[__i]); \
} \
} while (0)
#define MAYBE_CONJ(_conj, _buffer) \
acc::maybeConjugate((DataFieldType<F>*)_conj, \
(DataFieldType<F>*)_buffer,\
NoNoNo);
#endif
F one{1.0}, m_one{-1.0}, zero{0.0};
const size_t NoNoNo = No*NoNo;
// Zeroing vectors
#ifdef HAVE_CUDA
// DataFieldType<F>* _t_buffer;
// DataFieldType<F>* _vhhh;
// WITH_CHRONO("double:cuda:alloc",
// _CHECK_CUDA_SUCCESS("Allocating _t_buffer",
// cuMemAlloc((CUdeviceptr*)&_t_buffer,
// NoNoNo * sizeof(DataFieldType<F>)));
// _CHECK_CUDA_SUCCESS("Allocating _vhhh",
// cuMemAlloc((CUdeviceptr*)&_vhhh,
// NoNoNo * sizeof(DataFieldType<F>)));
// )
#if !defined(ATRIP_ONLY_DGEMM)
// we still have to zero this
const size_t
bs = Atrip::kernelDimensions.ooo.blocks,
ths = Atrip::kernelDimensions.ooo.threads;
acc::zeroing<<<bs, ths>>>((DataFieldType<F>*)_t_buffer, NoNoNo);
acc::zeroing<<<bs, ths>>>((DataFieldType<F>*)_vhhh, NoNoNo);
{
const size_t elements = NoNoNo * sizeof(DataFieldType<F>)/4;
WITH_CHRONO("double:zeroing",
_CHECK_CUDA_SUCCESS("Zeroing Tijk",
cuMemsetD32_v2((CUdeviceptr)Tijk, 0x00, elements));
_CHECK_CUDA_SUCCESS("Zeroing t buffer",
cuMemsetD32_v2((CUdeviceptr)_t_buffer, 0x00, elements));
_CHECK_CUDA_SUCCESS("Zeroing vhhh buffer",
cuMemsetD32_v2((CUdeviceptr)_vhhh, 0x00, elements));
)
}
#endif
#else
DataFieldType<F>* _t_buffer = (DataFieldType<F>*)malloc(NoNoNo * sizeof(F));
DataFieldType<F>* _vhhh = (DataFieldType<F>*)malloc(NoNoNo * sizeof(F));
DataFieldType<F> zero_h{0.0};
for (size_t i=0; i < NoNoNo; i++) {
_t_buffer[i] = zero_h;
_vhhh[i] = zero_h;
}
#endif
// Set Tijk to zero
#if defined(HAVE_CUDA) && !defined(ATRIP_ONLY_DGEMM)
WITH_CHRONO("double:reorder",
acc::zeroing<<<bs, ths>>>((DataFieldType<F>*)Tijk,
NoNoNo);
)
#endif
#if !defined(HAVE_CUDA)
WITH_CHRONO("double:reorder",
for (size_t k = 0; k < NoNoNo; k++) {
Tijk[k] = DataFieldType<F>{0.0};
})
#endif /* !defined(HAVE_CUDA) */
std::memset((void*)_t_buffer, 0x00, NoNoNo * sizeof(DataFieldType<F>));
std::memset((void*)_vhhh, 0x00, NoNoNo * sizeof(DataFieldType<F>));
std::memset((void*)Tijk, 0x00, NoNoNo * sizeof(DataFieldType<F>));
#endif /* HAVE_CUDA */
#if defined(ATRIP_ONLY_DGEMM)